Patents by Inventor Qili Su

Qili Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230253618
    Abstract: A polymeric gel electrolyte for an electrochemical cell, such as a solid-state battery, is provided herein as well an electrochemical cell including the polymeric gel electrolyte. The polymeric gel electrolyte includes one or more lithium salts, a plasticizer component, an additive component, and a polymeric host. Examples of the plasticizer component include a carbonate, a lactone, a nitrile, a sulfone, an ether, a phosphate, and combinations thereof. The additive component includes a boron-containing additive and a carbonate-containing additive.
    Type: Application
    Filed: August 9, 2022
    Publication date: August 10, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe LI, Qili SU, Meiyuan WU, Haijing LIU
  • Publication number: 20230253617
    Abstract: A polymeric gel electrolyte for an electrochemical cell, such as a solid-state battery, is provided herein as well an electrochemical cell including the polymeric gel electrolyte. The polymeric gel electrolyte includes one or more lithium salts, a plasticizer component, an additive component, and a polymeric host. Examples of the plasticizer component include a carbonate, a lactone, a nitrile, a sulfone, an ether, a phosphate, and combinations thereof. The additive component includes a boron-containing additive and a carbonate-containing additive.
    Type: Application
    Filed: August 9, 2022
    Publication date: August 10, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe LI, Qili SU, Meiyuan WU, Haijing LIU
  • Publication number: 20230246161
    Abstract: A pre-lithiated, precursor electrode includes an electroactive material layer, a current collector, and a lithium foil disposed between the electroactive material layer and the current collector. A method of preparing an electrode to be used in an electrochemical cell is provide. The method includes preparing a pre-lithiated, precursor electrode. Preparing the pre-lithiated precursor electrode includes contacting at least a first electroactive material layer with a first surface of a lithium foil assembly, where the lithium foil assembly includes a current collector and at least a first lithium foil disposed on or adjacent to a first surface of the current collector. The method may further include contacting the prelithiated, precursor electrode with an electrolyte in the electrochemical cell, where the first lithium foil at least partially or fully dissolves when contacted by the electrolyte to form the electrode and a lithium reservoir in the electrochemical cell.
    Type: Application
    Filed: August 5, 2022
    Publication date: August 3, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili SU, Zhe LI, Dewen KONG, Mengyan HOU, Haijing LIU
  • Publication number: 20230246310
    Abstract: A high-power gel-assisted battery stack that cycles lithium ions is provided with two terminal electrodes having opposite polarities and at least one bipolar electrode assembly disposed therebetween. A first electrode is disposed on a first side of a bipolar current collector and a second electrode with an opposite polarity to the first electrode is disposed on a second side of the bipolar current collector. Each electrode includes a porous layer having an electroactive material and a solid-state electrolyte disposed in a polymeric binder. A polymer gel electrolyte is distributed in pores of the porous. The stack also includes at least two free-standing gel separator layers each being disposed between the at least one bipolar electrode assembly and terminal electrodes. Each respective free-standing gel separator layer comprises polyacrylonitrile (PAN) and an electrolyte distributed therein. The high-power gel-assisted battery stack has a maximum voltage rating of ?about 12V.
    Type: Application
    Filed: March 16, 2022
    Publication date: August 3, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong LU, Zhe LI, Mengyan HOU, Qili SU, Meiyuan WU, Xiaochao QUE, Haijing LIU, Si CHEN
  • Publication number: 20230246172
    Abstract: A positive electrode including an active layer is provided, where the active layer includes a plurality of positive electroactive solid-state particles, a lithium-source material coated on or dispersed with the positive electroactive solid-state particles in the active layer, and a polymeric gel electrolyte at least partially filling voids between the positive electroactive solid-state particles in the active layer. The lithium-source material having a theoretical specific capacity greater than or equal to about 100 mAh/g to less than or equal to about 3,000 mAh/g.
    Type: Application
    Filed: May 17, 2022
    Publication date: August 3, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe LI, Qili SU, Yong LU, Meiyuan WU, Haijing LIU
  • Patent number: 11651906
    Abstract: Hybrid lithium-ion electrochemical cells include a first electrode having a first polarity and a first electroactive material that reversibly cycles lithium ions having a first maximum operational voltage and a second electrode having the first polarity with a second electroactive material having a second maximum operational voltage. A difference between the second and first maximum operational voltages defines a predetermined voltage difference. Also included are at least one third electrode including a third electroactive material that reversibly cycles lithium ions having a second polarity opposite to the first polarity, a separator, and electrolyte. A voltage modification component (e.g., diode) is in electrical communication with the first and the second electrodes.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: May 16, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili Su, Haijing Liu, Meiyuan Wu, Dewen Kong, Mengyan Hou
  • Publication number: 20230093233
    Abstract: A capacitor assisted battery module includes a first diode including an anode and a cathode. A second diode includes an anode and a cathode. The anode of the first diode is connected to the cathode of the second diode at a first node. A first capacitor assisted battery (CAB) block includes a positive terminal, a negative terminal and N CABs, where N is an integer greater than zero. The positive terminal of the first CAB block is connected to the cathode of the first diode. A second capacitor assisted battery (CAB) block includes a positive terminal, a negative terminal and N CABs, wherein the negative terminal of the second CAB block is connected to the anode of the second diode. The negative terminal of the first CAB block and the positive terminal of the second CAB block are connected to a second node.
    Type: Application
    Filed: December 28, 2021
    Publication date: March 23, 2023
    Inventors: Qili Su, Dewen Kong, Si Chen, Haijing Liu, Dave G. Rich, Lyall K. Winger
  • Publication number: 20230072660
    Abstract: A battery includes positive and negative current collectors and a plurality of bipolar electrodes arranged in a stack between the positive and negative current collectors. The positive and negative current collectors and the stack of the plurality of bipolar electrodes are folded in an S-shape.
    Type: Application
    Filed: December 23, 2021
    Publication date: March 9, 2023
    Inventors: Qili SU, Zhe LI, Meiyuan WU, Mengyan HOU, Haijing LIU
  • Publication number: 20230074112
    Abstract: The present disclosure provides a polymeric gel electrolyte for an electrochemical cell that cycles lithium ions. The polymeric gel electrolyte includes greater than or equal to about 0.1 wt. % to less than or equal to about 10 wt. % of a non-lithium salt. The non-lithium salt includes a non-lithium cation having an ion radius that is greater than or equal to about 80% to less than or equal to about 250% of an ion radius of a lithium ion. The polymeric gel electrolyte further includes greater than or equal to about 50 wt. % to less than or equal to about 99.9 wt. % of a non-volatile gel. The non-volatile gel includes greater than or equal to 0 wt. % to less than or equal to about 50 wt. % of a polymeric host and greater than or equal to about 5 wt. % to less than or equal to about 100 wt. % of a liquid electrolyte.
    Type: Application
    Filed: March 31, 2022
    Publication date: March 9, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili SU, Zhe LI, Yong LU, Haijing LIU
  • Publication number: 20230063684
    Abstract: An anode-free solid-state battery includes a cathode layer having transient anode elements and a bare current collector devoid of non-transitory anode material and configured to accept thereon the transient anode elements. The battery also includes a solid-state electrolyte layer defining voids and arranged between the current collector and the cathode layer. The battery additionally includes a gel situated within the solid-state electrolyte and cathode layers, to permeate the electrolyte voids and form a gelled solid-state electrolyte layer, coat the cathode layer, and facilitate ionic conduction of the anode elements between the cathode layer, the solid-state electrolyte layer, and the current collector. Charging the battery diffuses the anode elements from the cathode layer, via the gelled solid-state electrolyte layer, onto the current collector. Discharging the battery returns the anode elements, via the gelled solid-state electrolyte layer, to the cathode layer.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe Li, Yong Lu, Haijing Liu, Qili Su, Xiaochao Que, Mark W. Verbrugge
  • Publication number: 20230046608
    Abstract: An electrochemical cell that cycles lithium ions is provided. The electrochemical cell includes a first electrode, a second electrode, and an electrolyte layer disposed between the first electrode and the second electrode. The first electrode includes a first plurality of solid-state electroactive material particles and a first polymeric gel electrolyte, where the first polymeric gel electrolyte includes a first additive. The second electrode includes a second plurality of solid-state electroactive material particles and a second polymeric gel electrolyte that is different from the first polymeric gel electrolyte, where the second polymeric gel electrolyte includes a second additive. The electrolyte layers include a third polymeric gel electrolyte that is different from both the first polymeric gel electrolyte and the second polymeric gel electrolyte.
    Type: Application
    Filed: March 31, 2022
    Publication date: February 16, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili SU, Zhe LI, Mengyan HOU, Yong LU, Haijing LIU
  • Patent number: 11575120
    Abstract: An electrode including micro-sized secondary particle (MSSP) with enhanced ionic conductivity for solid-state battery is provided. The MSSP comprises a cathode particle and a solid-state electrolyte. The cathode particle is at least partially coated by solid-state electrolyte. The lithium ion transport inside the micro-sized secondary particles is increased by the incorporation of solid-state electrolyte. The electrode can be prepared by casting the slurry comprising MSSP, another electrolyte, binders, and conductive additives on the current collector. The current collector is comprised of a conductive material. The current collector has a first side and a second side. The electrode active material layer is disposed on one of the first and second sides of the current collector.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 7, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mengyan Hou, Zhe Li, Qili Su, Xiaochao Que, Meiyuan Wu
  • Publication number: 20230025830
    Abstract: The present disclosure provides a method for forming a solid-state battery. The method includes stacking two or more cell units, where each cell unit is formed by substantially aligning a first electrode and a second electrode, where the first electrode includes one or more first electroactive material layers disposed on or adjacent to one or more surfaces of a releasable substrate and the second electrode includes one or more second electroactive material layers disposed on or adjacent to one or more surfaces of a current collector; disposing an electrolyte layer between exposed surfaces of the first electrode and the second electrode; and removing the releasable substrate to form the cell unit.
    Type: Application
    Filed: March 17, 2022
    Publication date: January 26, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili SU, Mengyan HOU, Zhe LI, Haijing LIU
  • Publication number: 20230015143
    Abstract: A method for forming a solid-state battery is provided. The method includes disposing one or more cell units along a continuous current collector to form a stack precursor. In some examples, disposing of the one or more cell units along the continuous current collector includes concurrently disposing the one or more cell units along the continuous current collector and winding the continuous current collector to form a stack. In other examples, the continuous current collector is a z-folded current collector and the disposing the one or more cell units along the continuous current collector includes inserting the one or more cell units into one or more pockets formed by folds of the continuous current collector. The method may further include applying heat, pressure, or a combination of heat and pressure to the stack precursor to form a compressed stack, and cutting the continuous current collector to form the solid-state battery.
    Type: Application
    Filed: March 7, 2022
    Publication date: January 19, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili SU, Mengyan HOU, Meiyuan WU, Haijing LIU
  • Publication number: 20220263129
    Abstract: An electrolyte composition is provided. The electrolyte composition includes a solvate ionic liquid having an anion and a complex of an ether and a cation, and a diluter including a phosphorus-containing flame-retardant having a dielectric constant of less than or equal to about 20.
    Type: Application
    Filed: December 20, 2021
    Publication date: August 18, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong LU, Zhe LI, Qili SU
  • Publication number: 20220263055
    Abstract: A method for forming a bipolar solid-state battery may include preparing a plurality of freestanding gels each comprising a polymer, a solvent, and a lithium salt and, also, positioning a first freestanding gel between a first electrode and a second electrode and a second freestanding gel between the second electrode and a third electrode. Each of the first electrode, the second electrode, and the third electrode may include a plurality of electroactive particles. The method may also include infiltrating at least a portion of the first free-standing gel into a space between particles of the first electrode and the second electrode and at least a portion of the second free-standing gel into a space between the particles of second electrode and the third electrode.
    Type: Application
    Filed: December 14, 2021
    Publication date: August 18, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mengyan HOU, Qili SU, Meiyuan WU, Haijing LIU
  • Patent number: 11404714
    Abstract: A bipolar battery may comprise first, second, and third bipolar electrodes that are physically and electrically isolated from one another by intervening non-liquid electrolyte layers. Each of the bipolar electrodes may comprise a bipolar current collector including a first electroactive material layer connected to a first side thereof and a second electroactive material layer connected to a second side thereof. Each electroactive material layer may comprise at least one of: (i) a lithium ion battery positive electrode material, (ii) a lithium ion battery negative electrode material, and/or (iii) a capacitor electrode material. At least one of the electroactive material layers comprises a capacitor electrode material.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: August 2, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mengyan Hou, Haijing Liu, Mark W. Verbrugge, Qili Su, Meiyuan Wu
  • Patent number: 11393640
    Abstract: A battery having a plurality of electrodes immersed in a water-in-salt electrolytic solution is disclosed. The water-in-salt electrolytic solution includes a sufficient amount of a lithium salt disposed in an aqueous solvent, at least 14 moles of lithium salt per kg of aqueous solvent, such that a dissociated lithium ion is solvated by less than 4 water molecules. The plurality of electrodes includes a first type electrode, a second type electrode, and a third type electrode selectively assembled in a predetermined order of arrangement into an electrode stack assembly. The first type electrode includes an activated carbon, the second type electrodes include one of a lithium manganese oxide (LMO) and titanium dioxide (TiO2), and the third type electrodes include the other of the LMO and TiO2. The first type electrode may be that of a cathode and/or anode.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: July 19, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong Lu, Qili Su, Haijing Liu, Jingjing Wu
  • Patent number: 11380939
    Abstract: A hybrid lithium ion capacitor battery and method of making the same is disclosed. The hybrid lithium ion capacitor battery includes a positive electrode separated from a negative electrode by a separator layer. A first activated carbon layer is disposed between the separator layer and one of the positive and negative electrodes. The first activated carbon layer is coated on a first surface of the separator layer. A second activated carbon layer is disposed between the separator layer and the other of the positive and negative electrodes. The second activated carbon layer is coated on a second surface of the separator layer. A first current collector coextensively contacts the first electrode and a second current collector coextensively contacts the second electrode. An electrolytic solution carries lithium cations between the positive and negative electrodes through the activated carbon coated separator layer.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: July 5, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili Su, Dewen Kong, Yong Lu, Zhe Li
  • Publication number: 20220166017
    Abstract: A negative electrode and an electrochemical cell are provided herein. The negative electrode and the electrochemical cell include a protective coating for preventing and inhibiting growth of lithium dendrite on the negative electrode and growth into a separator. The protective coating includes a first layer and second layer. The first layer includes a first polymeric binder and an optional insulating material. The second layer includes a dendrite consuming material and a second polymeric binder.
    Type: Application
    Filed: November 23, 2021
    Publication date: May 26, 2022
    Applicant: GM Global Technology Operations LLC
    Inventors: Qili SU, Mengyan HOU, Haijing LIU, Zhe LI