Patents by Inventor Qili Su

Qili Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220123352
    Abstract: A high-temperature stable solid-state bipolar battery is provided. The battery includes two or more electrodes, one or more solid-state electrolyte layers, and an ionogel disposed within void spaces within the battery. Each electrode includes a plurality of solid-state electroactive particles. Each solid-state electrolyte layer includes a plurality of solid-state electrolyte particles and a first solid-state electrolyte layer of the one or more solid-state electrolyte layers may be disposed between a first electrode and a second electrode of the two or more electrodes. The ionogel is disposed within void spaces between the two or more electrodes, the solid-state electroactive particles of the two or more electrodes, the solid-state electrolyte particles of the one or more solid-state electrolyte layers, and the one or more solid-state electrolyte layers, such that the battery has an reduced interparticle porosity. The ionogel may have an ionic conductivity between about 0.1 mS/Cm and about 10 mS/cm.
    Type: Application
    Filed: September 21, 2021
    Publication date: April 21, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe LI, Yong LU, Qili SU, Meiyuan WU, Haijing LIU
  • Patent number: 11295901
    Abstract: A bipolar capacitor-assisted solid-state battery is disclosed that includes a plurality of electrochemical battery unit cells, each of which includes a negative electrode, a positive electrode, and a lithium ion-conductive electrolyte-containing separator disposed between the negative electrode and the positive electrode. The lithium ion-conductive electrolyte-containing separator of each electrochemical battery unit cell comprises a solid-state electrolyte material, and, additionally, at least one negative electrode of the electrochemical battery unit cells or at least one positive electrode of the electrochemical battery unit cells includes a capacitor material. The bipolar capacitor-assisted solid-state battery further includes a bipolar current collector disposed between a negative electrode of one electrochemical battery unit cell and a positive electrode of an adjacent electrochemical battery unit cell.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: April 5, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mengyan Hou, Haijing Liu, Mark W. Verbrugge, Xiaochao Que, Qili Su, Meiyuan Wu
  • Patent number: 11145922
    Abstract: A solid-state battery cell having a capacitor interlayer is disclosed. The solid-state battery includes an anode, a cathode spaced from the anode, a solid-state electrolyte layer disposed between the anode and the cathode, and a capacitor assisted interlayer sandwiched between at least one of (i) the anode and solid-state electrolyte layer, and (ii) the cathode and the solid-state electrolyte layer. The capacitor assisted interlayer comprise at least one of a polymer-based material, an inorganic material, and a polymer-inorganic hybrid material; and a capacitor anode active material or a capacitor cathode active material. The polymer-based material includes at least one of a poly(ethylene glycol) methylether acrylate with Al2O3 and LiTFSI, a polyethylene oxide (PEO) with LiTFSI, and a poly(vinylidene fluoride) copolymer with hexafluoropropylene (PVDF-HFP)-based gel electrolyte. The inorganic material includes a 70% Li2S-29% P2S5-1% P2O5.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: October 12, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe Li, Xiaochao Que, Haijing Liu, Qili Su, Yong Lu
  • Patent number: 11121375
    Abstract: Individual electrodes for a solid-state lithium-ion battery cell may be formed, for example, by elevated temperature consolidation in air of a mixture of resin-bonded, electrode active material particles, oxide solid electrolyte particles, and particles of a non-carbon electronic conductive additive. Depending on the selected compositions of the electrode materials and the solid electrolyte, one or both of the cathode and anode layer members may be formed to include the non-carbon electronic conductive additive. The battery cell is assembled with the solid-state electrodes placed on opposite sides of a consolidated layer of oxide electrolyte particles. The electronic conductivity of at least one of the cathode and anode is increased by the incorporation of particles of a selected non-carbon electronic conducive additive with the respective electrode particles.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: September 14, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mengyan Hou, Zhe Li, Dewen Kong, Haijing Liu, Qili Su
  • Publication number: 20210135224
    Abstract: A hybrid electrochemical device including at least two electrically connected solid-state electrochemical cells is provided. Each electrochemical cell includes a first outer electrode having a first current collector and a first electroactive layer, a second outer electrode having a second current collector and a second electroactive layer, and one or more intervening electrodes disposed between the electroactive layers. At least one of the intervening electrodes includes one or more capacitor additives. The first outer electrode is electrically connected to at least one of the intervening electrodes in a first electrical configuration. The second outer electrode is electrically connected to at least one of the intervening electrodes in a second electrical configuration. The at least two electrochemical cells are electrically connected in a third electrical configuration.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 6, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mengyan HOU, Haijing LIU, Qili SU, Xiaochao QUE
  • Publication number: 20210110980
    Abstract: Hybrid lithium-ion electrochemical cells include a first electrode having a first polarity and a first electroactive material that reversibly cycles lithium ions having a first maximum operational voltage and a second electrode having the first polarity with a second electroactive material having a second maximum operational voltage. A difference between the second and first maximum operational voltages defines a predetermined voltage difference. Also included are at least one third electrode including a third electroactive material that reversibly cycles lithium ions having a second polarity opposite to the first polarity, a separator, and electrolyte. A voltage modification component (e.g., diode) is in electrical communication with the first and the second electrodes.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili SU, Haijing LIU, Meiyuan WU, Dewen KONG, Mengyan HOU
  • Publication number: 20210050157
    Abstract: A bipolar capacitor-assisted solid-state battery is disclosed that includes a plurality of electrochemical battery unit cells, each of which includes a negative electrode, a positive electrode, and a lithium ion-conductive electrolyte-containing separator disposed between the negative electrode and the positive electrode. The lithium ion-conductive electrolyte-containing separator of each electrochemical battery unit cell comprises a solid-state electrolyte material, and, additionally, at least one negative electrode of the electrochemical battery unit cells or at least one positive electrode of the electrochemical battery unit cells includes a capacitor material. The bipolar capacitor-assisted solid-state battery further includes a bipolar current collector disposed between a negative electrode of one electrochemical battery unit cell and a positive electrode of an adjacent electrochemical battery unit cell.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 18, 2021
    Inventors: Mengyan Hou, Haijing Liu, Mark W. Verbrugge, Xiaochao Que, Qili Su, Meiyuan Wu
  • Publication number: 20210036310
    Abstract: An electrode including micro-sized secondary particle (MSSP) with enhanced ionic conductivity for solid-state battery is provided. The MSSP comprises a cathode particle and a solid-state electrolyte. The cathode particle is at least partially coated by solid-state electrolyte. The lithium ion transport inside the micro-sized secondary particles is increased by the incorporation of solid-state electrolyte. The electrode can be prepared by casting the slurry comprising MSSP, another electrolyte, binders, and conductive additives on the current collector. The current collector is comprised of a conductive material. The current collector has a first side and a second side. The electrode active material layer is disposed on one of the first and second sides of the current collector.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 4, 2021
    Inventors: Mengyan Hou, Zhe Li, Qili Su, Xiaochao Que, Meiyuan Wu
  • Publication number: 20210028481
    Abstract: A bipolar battery may comprise first, second, and third bipolar electrodes that are physically and electrically isolated from one another by intervening non-liquid electrolyte layers. Each of the bipolar electrodes may comprise a bipolar current collector including a first electroactive material layer connected to a first side thereof and a second electroactive material layer connected to a second side thereof. Each electroactive material layer may comprise at least one of: (i) a lithium ion battery positive electrode material, (ii) a lithium ion battery negative electrode material, and/or (iii) a capacitor electrode material. At least one of the electroactive material layers comprises a capacitor electrode material.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 28, 2021
    Inventors: Mengyan Hou, Haijing Liu, Mark W. Verbrugge, Qili Su, Meiyuan Wu
  • Publication number: 20210021009
    Abstract: A solid-state battery cell having a capacitor interlayer is disclosed. The solid-state battery includes an anode, a cathode spaced from the anode, a solid-state electrolyte layer disposed between the anode and the cathode, and a capacitor assisted interlayer sandwiched between at least one of (i) the anode and solid-state electrolyte layer, and (ii) the cathode and the solid-state electrolyte layer. The capacitor assisted interlayer comprise at least one of a polymer-based material, an inorganic material, and a polymer-inorganic hybrid material; and a capacitor anode active material or a capacitor cathode active material. The polymer-based material includes at least one of a poly(ethylene glycol) methylether acrylate with Al2O3 and LiTFSI, a polyethylene oxide (PEO) with LiTFSI, and a poly(vinylidene fluoride) copolymer with hexafluoropropylene (PVDF-HFP)-based gel electrolyte. The inorganic material includes a 70% Li2S-29% P2S5-1% P2O5.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 21, 2021
    Inventors: Zhe Li, Xiaochao Que, Haijing Liu, Qili Su, Yong Lu
  • Publication number: 20210012975
    Abstract: A hybrid lithium ion capacitor battery and method of making the same is disclosed. The hybrid lithium ion capacitor battery includes a positive electrode separated from a negative electrode by a separator layer. A first activated carbon layer is disposed between the separator layer and one of the positive and negative electrodes. The first activated carbon layer is coated on a first surface of the separator layer. A second activated carbon layer is disposed between the separator layer and the other of the positive and negative electrodes. The second activated carbon layer is coated on a second surface of the separator layer. A first current collector coextensively contacts the first electrode and a second current collector coextensively contacts the second electrode. An electrolytic solution carries lithium cations between the positive and negative electrodes through the activated carbon coated separator layer.
    Type: Application
    Filed: May 18, 2018
    Publication date: January 14, 2021
    Inventors: Qili SU, Dewen KONG, Yong LU, Zhe LI
  • Publication number: 20200279695
    Abstract: A battery having a plurality of electrodes immersed in a water-in-salt electrolytic solution is disclosed. The water-in-salt electrolytic solution includes a sufficient amount of a lithium salt disposed in an aqueous solvent, at least 14 moles of lithium salt per kg of aqueous solvent, such that a dissociated lithium ion is solvated by less than 4 water molecules. The plurality of electrodes includes a first type electrode, a second type electrode, and a third type electrode selectively assembled in a predetermined order of arrangement into an electrode stack assembly. The first type electrode includes an activated carbon, the second type electrodes include one of a lithium manganese oxide (LMO) and titanium dioxide (TiO2), and the third type electrodes include the other of the LMO and TiO2. The first type electrode may be that of a cathode and/or anode.
    Type: Application
    Filed: June 20, 2018
    Publication date: September 3, 2020
    Inventors: Yong Lu, Qili Su, Haijing Liu, Jingjing Wu
  • Publication number: 20200119357
    Abstract: Individual electrodes for a solid-state lithium-ion battery cell may be formed, for example, by elevated temperature consolidation in air of a mixture of resin-bonded, electrode active material particles, oxide solid electrolyte particles, and particles of a non-carbon electronic conductive additive. Depending on the selected compositions of the electrode materials and the solid electrolyte, one or both of the cathode and anode layer members may be formed to include the non-carbon electronic conductive additive. The battery cell is assembled with the solid-state electrodes placed on opposite sides of a consolidated layer of oxide electrolyte particles. The electronic conductivity of at least one of the cathode and anode is increased by the incorporation of particles of a selected non-carbon electronic conducive additive with the respective electrode particles.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Inventors: Mengyan Hou, Zhe Li, Dewen Kong, Haijing Liu, Qili Su