Patents by Inventor Qingbo Liu

Qingbo Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210079070
    Abstract: Antibodies and antigen binding fragments that specifically bind to HIV-1 Env and neutralize HIV-1 are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. Methods for detecting HIV-1 using these antibodies are disclosed. In addition, the use of these antibodies, antigen binding fragment, nucleic acids and vectors to prevent and/or treat an HIV-1 infection is disclosed.
    Type: Application
    Filed: February 21, 2019
    Publication date: March 18, 2021
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Servic
    Inventors: Paolo Lusso, Qingbo Liu, Peter Kwong, John Mascola, Young Do Kwon
  • Publication number: 20200399369
    Abstract: Provided herein are trispecific and/or trivalent binding proteins comprising four polypeptide chains that form three antigen binding sites that specifically bind one or more target proteins, wherein a first pair of polypeptides forming the binding protein possess dual variable domains having a cross-over orientation, and wherein and a second pair of polypeptides possess a single variable domain forming a single antigen binding site. In some embodiments, the binding proteins comprise a binding site that binds a CD28 polypeptide, a binding site that binds a CD3 polypeptide, and a binding site that binds a third polypeptide, such as a tumor target protein. In some embodiments, the binding proteins comprise four polypeptide chains that form three antigen binding sites that specifically bind one or more HIV target proteins. The disclosure also relates to methods for making trispecific and/or trivalent binding proteins and uses of such binding proteins.
    Type: Application
    Filed: April 8, 2020
    Publication date: December 24, 2020
    Inventors: Mangaiarkarasi ASOKAN, Christian BEIL, Jochen BENINGA, Joerg BIRKENFELD, Mark CONNORS, Richard A. KOUP, Young Do KWON, Peter D. KWONG, Qingbo LIU, Paolo LUSSO, John R. MASCOLA, Gary J. NABEL, Amarendra PEGU, Huawei QIU, Ercole RAO, Joerg REGULA, Edward SEUNG, Ronnie WEI, Lan WU, Zhen XING, Ling XU, Zhi-Yong YANG, Béatrice Cameron, Tarik Dabdoubi, Cendrine Lemoine, Catherine Prades
  • Patent number: 10837235
    Abstract: A hybrid rotary guiding device, includes: rotating shaft, the rotating shaft is used to drive the head of a drill tool to rotate, the rotating shaft includes an upper shaft portion, a lower shaft portion, and a steerable portion, a separation distance exists between the upper shaft portion and the lower shaft portion in the axial direction, the upper shaft portion and the lower shaft portion are steerably connected by the steerable portion; the upper shaft portion is installed with at least three first hydraulic mechanisms, and the lower shaft portion is installed with at least three second hydraulic mechanisms, the second hydraulic mechanism is adapted to drive a pushing member against the wall of the well to guide the head of a drill tool, the first hydraulic mechanism and the second hydraulic mechanism are configured so that the first hydraulic mechanism can drive the second hydraulic mechanism to drive the pushing member.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 17, 2020
    Assignee: INSTITUTE OF GEOLOGY AND GEOPHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingbo Liu, Qingyun Di, Tsili Wang, Wenxuan Chen, Jiansheng Du, Yongyou Yang, Xinzhen He, Linfeng Hong, Qijun Xie
  • Patent number: 10815730
    Abstract: The invention discloses an anti-rotating device of non-rotating sleeve. The anti-rotating device is connected with the non-rotating sleeve in such way so that the anti-rotating device can transmit circumferential acting force to the non-rotating sleeve, thus the non-rotating sleeve are prevented from rotating, the anti-rotating device comprises an anti-rotating member and a resilient member, the anti-rotating member can move in a generally radial direction of the non-rotating sleeve, and the resilient member acts on the anti-rotating member and provides acting force being substantially radially outward for the anti-rotating member.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: October 27, 2020
    Assignee: INSTITUTE OF GEOLOGY AND GEOPHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingbo Liu, Qingyun Di, Tsili Wang, Wenxuan Chen, Jiansheng Du, Yongyou Yang, Xinzhen He, Linfeng Hong, Qijun Xie
  • Publication number: 20200263500
    Abstract: The invention discloses an anti-rotating device of non-rotating sleeve. The anti-rotating device is connected with the non-rotating sleeve in such way so that the anti-rotating device can transmit circumferential acting force to the non-rotating sleeve, thus the non-rotating sleeve are prevented from rotating, the anti-rotating device comprises an anti-rotating member and a resilient member, the anti-rotating member can move in a generally radial direction of the non-rotating sleeve, and the resilient member acts on the anti-rotating member and provides acting force being substantially radially outward for the anti-rotating member.
    Type: Application
    Filed: March 2, 2018
    Publication date: August 20, 2020
    Applicant: Institute of Geology and Geophysics, Chinese Academy of Sciences
    Inventors: Qingbo LIU, Qingyun DI, Tsili WANG, Wenxuan CHEN, Jiansheng DU, Yongyou YANG, Xinzhen HE, Linfeng HONG, Qijun XIE
  • Publication number: 20200263503
    Abstract: A hybrid rotary guiding device, includes: rotating shaft, the rotating shaft is used to drive the head of a drill tool to rotate, the rotating shaft includes an upper shaft portion, a lower shaft portion, and a steerable portion, a separation distance exists between the upper shaft portion and the lower shaft portion in the axial direction, the upper shaft portion and the lower shaft portion are steerably connected by the steerable portion; the upper shaft portion is installed with at least three first hydraulic mechanisms, and the lower shaft portion is installed with at least three second hydraulic mechanisms, the second hydraulic mechanism is adapted to drive a pushing member against the wall of the well to guide the head of a drill tool, the first hydraulic mechanism and the second hydraulic mechanism are configured so that the first hydraulic mechanism can drive the second hydraulic mechanism to drive the pushing member.
    Type: Application
    Filed: March 2, 2018
    Publication date: August 20, 2020
    Applicant: Institute of Geology and Geophysics, Chinese Academy of Sciences
    Inventors: Qingbo LIU, Qingyun DI, Tsili WANG, Wenxuan CHEN, Jiansheng DU, Yongyou YANG, Xinzhen HE, Linfeng HONG, Qijun XIE
  • Patent number: 10734397
    Abstract: A method for forming a 3D memory device is disclosed. The method includes: forming an first insulating layer on a substrate in a peripheral region, the first insulating layer having a slope near a boundary between the peripheral region and a core region of the substrate; forming an alternating conductive/dielectric stack on the substrate and the slope of the first insulating layer, a lateral portion of the alternating conductive/dielectric stack extending along a top surface of the substrate in the core region, and an inclined portion of the alternating conductive/dielectric stack extending along the slope of the first insulating layer; and forming a plurality of contacts to electrically contact a plurality of conductive layers in the inclined portion of the alternating conductive/dielectric stack.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: August 4, 2020
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Cheng Zhou, Bin Yuan, QingBo Liu, Song Man Xu, Siying Liu, Rui Gong, Zhiguo Zhao, Zhaoyun Tang, Zhiliang Xia, Zongliang Huo
  • Patent number: 10693268
    Abstract: The present disclosure relates to a conductive slip ring for logging while drilling (LWD) instrument. The present disclosure utilizes a mechanical conductive slip ring to solve the problems of transmission of electric power and signals between two structures that have relative rotation, and the conductive slip ring has a simple structure, doesn't involve any complex circuit, and has low cost and high reliability. With the conductive slip ring in the present disclosure, there is no power transmission efficiency problem or signal transmission error rate problem. The conductive slip ring has high temperature-resistant, pressure-proof, and vibration-roof abilities, and can be applied widely.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 23, 2020
    Assignee: INSTITUTE OF GEOLOGY AND GEOPHYSICS CHINESE ACADEMY OF SCIENCES
    Inventors: Xinzhen He, Qingyun Di, Wenxuan Chen, Jiansheng Du, Qingbo Liu
  • Publication number: 20200190909
    Abstract: A rotary guiding device comprises a rotating shaft, the rotating shaft is used to drive a tool head to rotate, and the rotating shaft includes at least one steerable portion; a first non-rotating body and a second non-rotating body, the first non-rotating body and the second non-rotating body are substantially in a non-rotating state in a circumferential direction thereof relative to the rotating shaft when the rotating shaft drives the tool head to rotate; a guide driving mechanism, the guide driving mechanism is configured to connect the first non-rotating body and the second non-rotating body, the guide driving mechanism is adapted to generate a substantially axial driving force to change the relative direction between the first non-rotating body and the second non-rotating body, thereby changing the orientation of the tool head.
    Type: Application
    Filed: March 2, 2018
    Publication date: June 18, 2020
    Applicant: INSTITUTE OF GEOLOGY AND GEOPHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingbo LIU, Qingyun DI, Tsili WANG, Wenxuan CHEN, Jiansheng DU, Yongyou YANG, Xinzhen HE, Linfeng HONG, Qijun XIE
  • Patent number: 10619478
    Abstract: The present disclosure provides a device for power transmission and signal transfer between the stator and the rotor of a screw drilling tool. The present disclosure can replace the wireless communication technique between the rotary steering tool and the integrated MWD/LWD, omit the upper mud generator above the rotary steering tool, and thereby realize power transmission and signal transfer between the stator and the rotor of the screw drilling tool.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: April 14, 2020
    Assignee: INSTITUTE OF GEOLOGY AND GEOPHYSICS CHINESE ACADEMY OF SCIENCES
    Inventors: Xinzhen He, Qingyun Di, Wenxuan Chen, Jiansheng Du, Qingbo Liu, Yongyou Yang
  • Publication number: 20200087986
    Abstract: A rotary guiding device based on radial driving force, comprising: a rotating shaft, the rotating shaft is used to drive a tool head to rotate, the rotating shaft includes an upper shaft portion, a lower shaft portion, and a steerable portion, the upper shaft portion and the lower shaft portion are steerably connected by the steerable portion;a non-rotating body mounted on the upper shaft portion, the non-rotating body is substantially non-rotating with respect to the rotating shaft in the circumferential direction when the rotating shaft rotationally drives the tool head, the lower shaft portion includes a rib portion that coincides at least partially in the axial direction with the non-rotating body, the non-rotating body includes at least three hydraulic driving mechanisms uniformly distributed along its circumferential direction, the three hydraulic driving mechanisms are adapted to controllably generate radial drive forces respectively, the radial driving forces acts on the rib portion that is overlapped
    Type: Application
    Filed: March 2, 2018
    Publication date: March 19, 2020
    Applicant: Institute of Geology and Geophysics, Chinese Academy of Sciences
    Inventors: Qingbo LIU, Qingyun DI, Tsili WANG, Wenxuan CHEN, Jiansheng DU, Yongyou YANG, Xinzhen HE, Linfeng HONG, Qijun XIE
  • Publication number: 20200067247
    Abstract: The present disclosure relates to a conductive slip ring for logging while drilling (LWD) instrument. The present disclosure utilizes a mechanical conductive slip ring to solve the problems of transmission of electric power and signals between two structures that have relative rotation, and the conductive slip ring has a simple structure, doesn't involve any complex circuit, and has low cost and high reliability. With the conductive slip ring in the present disclosure, there is no power transmission efficiency problem or signal transmission error rate problem. The conductive slip ring has high temperature-resistant, pressure-proof, and vibration-roof abilities, and can be applied widely.
    Type: Application
    Filed: August 29, 2019
    Publication date: February 27, 2020
    Applicant: Institute of Geology And Geophysics, Chinese Academy Of Sciences
    Inventors: Xinzhen He, Qingyun Di, Wenxuan Chen, Jiansheng Du, Qingbo Liu
  • Publication number: 20200003049
    Abstract: The present disclosure provides a device for power transmission and signal transfer between the stator and the rotor of a screw drilling tool. The present disclosure can replace the wireless communication technique between the rotary steering tool and the integrated MWD/LWD, omit the upper mud generator above the rotary steering tool, and thereby realize power transmission and signal transfer between the stator and the rotor of the screw drilling tool.
    Type: Application
    Filed: August 29, 2019
    Publication date: January 2, 2020
    Inventors: Xinzhen He, Qingyun Di, Wenxuan Chen, Jiansheng Du, Qingbo Liu, Yongyou Yang
  • Publication number: 20190081055
    Abstract: A method for forming a 3D memory device is disclosed. The method includes: forming an first insulating layer on a substrate in a peripheral region, the first insulating layer having a slope near a boundary between the peripheral region and a core region of the substrate; forming an alternating conductive/dielectric stack on the substrate and the slope of the first insulating layer, a lateral portion of the alternating conductive/dielectric stack extending along a top surface of the substrate in the core region, and an inclined portion of the alternating conductive/dielectric stack extending along the slope of the first insulating layer; and forming a plurality of contacts to electrically contact a plurality of conductive layers in the inclined portion of the alternating conductive/dielectric stack.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 14, 2019
    Applicant: Yangtze Memory Technologies Co., Ltd.
    Inventors: Cheng ZHOU, Bin Yuan, QingBo Liu, Song Man Xu, Siying Liu, Rui Gong, Zhiguo Zhao, Zhaoyun Tang, Zhiliang Xia, Zongliang Huo
  • Patent number: 9850571
    Abstract: The invention belongs to the technical field of inorganic compounds, and particularly, relates to a method for directly preparing graphene by taking CBr4 as a source material and using methods such as molecular-beam epitaxy (MBE) or chemical vapor deposition (CVD). A method for preparing graphene comprises the following steps: selecting a proper material as a substrate; directly depositing a catalyst and CBr4 on a surface of the substrate; and performing annealing treatment on the sample obtained through deposition. Compared with other technologies, an innovative point of the method in the invention is that the catalyst and CBr4 source can be quantitatively and controllably deposited on any substrate, and the catalyst and CBr4 source react on the surface of the substrate to form the graphene, so that the dependence of the graphene growth on a substrate material can be reduced to a great extent, and different substrate materials can be selected according to different application backgrounds.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: December 26, 2017
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Shumin Wang, Qian Gong, Xiaoming Xie, Hailong Wang, Zengfeng Di, Guqiao Ding, Qingbo Liu
  • Patent number: 9733175
    Abstract: The invention provides a full-automatic erythrocyte sedimentation rate analyzer, which comprises a base as well as a blending device and a detecting device mounted on the base, wherein the blending device comprises a sample rack, a sample rack bracket and a rotating device; the sample rack bracket is arranged on the base, and is connected to the sample rack through a rotating shaft; more than one test tube rack is arranged on the sample rack; the rotating device is connected to the rotating shaft, and drives the rotating shaft to rotationally drive the sample rack to turn over up and down; a plurality of holes are arranged in each test tube rack; a fixing device is arranged in the hole, and used for placing and fixing a closed container containing samples; the detecting device comprises a guide device, a driving device, infrared transmitting and receiving devices having the same quantity as that of the test tube racks, and a mounting rack; the driving device drives the mounting rack to move up and down along
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: August 15, 2017
    Assignee: SHENZHEN YHLO BIOTECH CO., LTD.
    Inventors: Kunhui Hu, Hui Yang, Qingbo Liu, Lin He
  • Publication number: 20150292110
    Abstract: The invention belongs to the technical field of inorganic compounds, and particularly, relates to a method for directly preparing graphene by taking CBr4 as a source material and using methods such as molecular-beam epitaxy (MBE) or chemical vapor deposition (CVD). A method for preparing graphene comprises the following steps: selecting a proper material as a substrate; directly depositing a catalyst and CBr4 on a surface of the substrate; and performing annealing treatment on the sample obtained through deposition. Compared with other technologies, an innovative point of the method in the invention is that the catalyst and CBr4 source can be quantitatively and controllably deposited on any substrate, and the catalyst and CBr4 source react on the surface of the substrate to form the graphene, so that the dependence of the graphene growth on a substrate material can be reduced to a great extent, and different substrate materials can be selected according to different application backgrounds.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 15, 2015
    Inventors: Shumin Wang, Qian Gong, Xiaoming Xie, Hailong Wang, Zengfeng Di, Guqiao Ding, Qingbo Liu
  • Publication number: 20150268148
    Abstract: The invention provides a full-automatic erythrocyte sedimentation rate analyzer, which comprises a base as well as a blending device and a detecting device mounted on the base, wherein the blending device comprises a sample rack, a sample rack bracket and a rotating device; the sample rack bracket is arranged on the base, and is connected to the sample rack through a rotating shaft; more than one test tube rack is arranged on the sample rack; the rotating device is connected to the rotating shaft, and drives the rotating shaft to rotationally drive the sample rack to turn over up and down; a plurality of holes are arranged in each test tube rack; a fixing device is arranged in the hole, and used for placing and fixing a closed container containing samples; the detecting device comprises a guide device, a driving device, infrared transmitting and receiving devices having the same quantity as that of the test tube racks, and a mounting rack; the driving device drives the mounting rack to move up and down along
    Type: Application
    Filed: June 19, 2013
    Publication date: September 24, 2015
    Inventors: Kunhui Hu, Hui Yang, Qingbo Liu, Lin He