Patents by Inventor Qingchun Zhang

Qingchun Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100133549
    Abstract: A semiconductor device may include a semiconductor buffer layer having a first conductivity type and a semiconductor mesa having the first conductivity type on a surface of the buffer layer. In addition, a current shifting region having a second conductivity type may be provided adjacent a corner between the semiconductor mesa and the semiconductor buffer layer, and the first and second conductivity types may be different conductivity types. Related methods are also discussed.
    Type: Application
    Filed: July 30, 2009
    Publication date: June 3, 2010
    Inventors: Qingchun Zhang, Anant K. Agarwal
  • Patent number: 7728402
    Abstract: A semiconductor device includes a semiconductor layer having a first conductivity type, a metal contact on the semiconductor layer and forming a Schottky junction with the semiconductor layer, and a semiconductor region in the semiconductor layer. The semiconductor region and the semiconductor layer form a first p-n junction in parallel with the Schottky junction. The first p-n junction is configured to generate a depletion region in the semiconductor layer adjacent the Schottky junction when the Schottky junction is reversed biased to thereby limit reverse leakage current through the Schottky junction. The first p-n junction is further configured such that punch-through of the first p-n junction occurs at a lower voltage than a breakdown voltage of the Schottky junction when the Schottky junction is reverse biased.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: June 1, 2010
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal
  • Patent number: 7719080
    Abstract: A semiconductor device includes a drift layer of a first conductivity type having a doping concentration and a conduction layer also of the first conductivity type on the drift layer that has a doping concentration greater than the doping concentration of the drift layer. The device also includes a pair of trench structures, each including a trench contact at one end and a region of a second conductivity type opposite the first conductivity type, at another end. Each trench structure extends into and terminates within the conduction layer such that the second-conductivity-type region is within the conduction layer. A first contact structure is on the drift layer opposite the conduction layer while a second contact structure is on the conduction layer.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: May 18, 2010
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventor: Qingchun Zhang
  • Patent number: 7687825
    Abstract: Insulated gate bipolar conduction transistors (IBCTs) are provided. The IBCT includes a drift layer having a first conductivity type. An emitter well region is provided in the drift layer and has a second conductivity type opposite the first conductivity type. A well region is provided in the drift layer and has the second conductivity type. The well region is spaced apart from the emitter well region. A space between the emitter well region and the well region defines a JFET region of the IBCT. An emitter region is provided in the well region and has the first conductivity type and a buried channel layer is provided on the emitter well region, the well region and the JFET region and has the first conductivity type. Related methods of fabrication are also provided.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: March 30, 2010
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Publication number: 20100032685
    Abstract: An electronic device includes a drift layer having a first conductivity type, a buffer layer having a second conductivity type, opposite the first conductivity type, on the drift layer and forming a P—N junction with the drift layer, and a junction termination extension region having the second conductivity type in the drift layer adjacent the P—N junction. The buffer layer includes a step portion that extends over a buried portion of the junction termination extension. Related methods are also disclosed.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 11, 2010
    Inventors: Qingchun Zhang, Anant K. Agarwal
  • Publication number: 20090315036
    Abstract: A semiconductor device according to some embodiments includes a semiconductor layer having a first conductivity type and a surface in which an active region of the semiconductor device is defined. A plurality of spaced apart first doped regions are arranged within the active region. The plurality of first doped regions have a second conductivity type that is opposite the first conductivity type, have a first dopant concentration, and define a plurality of exposed portions of the semiconductor layer within the active region. The plurality of first doped regions are arranged as islands in the semiconductor layer. A second doped region in the semiconductor layer has the second conductivity type and has a second dopant concentration that is greater than the first dopant concentration.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 24, 2009
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal
  • Publication number: 20090289262
    Abstract: An electronic device includes a silicon carbide drift region having a first conductivity type, a Schottky contact on the drift region, and a plurality of junction barrier Schottky (JBS) regions at a surface of the drift region adjacent the Schottky contact. The JBS regions have a second conductivity type opposite the first conductivity type and have a first spacing between adjacent ones of the JBS regions. The device further includes a plurality of surge protection subregions having the second conductivity type. Each of the surge protection subregions has a second spacing between adjacent ones of the surge protection subregions that is less than the first spacing.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 26, 2009
    Inventors: Qingchun Zhang, Sei-Hyung Ryu
  • Patent number: 7589377
    Abstract: In accordance with an embodiment of the present invention, a gate structure for a U-shape Metal-Oxide-Semiconductor (UMOS) device includes a dielectric layer formed into a U-shape having side walls and a floor to form a trench surrounding a dielectric layer interior region, a doped poly-silicon layer deposited adjacent to the dielectric layer within the dielectric layer interior region where the doped poly-silicon layer has side walls and a floor surrounding a doped poly-silicon layer interior region, a first metal layer deposited on the doped poly-silicon layer on a side opposite from the dielectric layer where the first metal layer has side walls and a floor surrounding a first metal layer interior region, and an undoped poly-silicon layer deposited to fill the first metal layer interior region.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: September 15, 2009
    Assignee: The Boeing Company
    Inventors: Mercedes P. Gomez, Emil M. Hanna, Wen-Ben Luo, Qingchun Zhang
  • Publication number: 20090212301
    Abstract: Edge termination structures for semiconductor devices are provided including a plurality of spaced apart concentric floating guard rings in a semiconductor layer that at least partially surround a semiconductor junction. The spaced apart concentric floating guard rings have a highly doped portion and a lightly doped portion. Related methods of fabricating devices are also provided herein.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 27, 2009
    Inventors: Qingchun Zhang, Charlotte Jones, Anant K. Agarwal
  • Publication number: 20090189228
    Abstract: The invention is a device for controlling conduction across a semiconductor body with a P type channel layer between active semiconductor regions of the device and the controlling gate contact. The device, often a MOSFET or an IGBT, includes at least one source, well, and drift region. The P type channel layer may be divided into sections, or divided regions, that have been doped to exhibit N type conductivity. By dividing the channel layer into regions of different conductivity, the channel layer allows better control over the threshold voltage that regulates current through the device. Accordingly, one of the divided regions in the channel layer is a threshold voltage regulating region. The threshold-voltage regulating region maintains its original P type conductivity and is available in the transistor for a gate voltage to invert a conductive zone therein. The conductive zone becomes the voltage regulated conductive channel within the device.
    Type: Application
    Filed: January 25, 2008
    Publication date: July 30, 2009
    Inventors: QINGCHUN ZHANG, SARAH HANEY, ANANT AGARWAL
  • Publication number: 20090146154
    Abstract: A transistor structure optimizes current along the A-face of a silicon carbide body to form an AMOSFET that minimizes the JFET effect in the drift region during forward conduction in the on-state. The AMOSFET further shows high voltage blocking ability due to the addition of a highly doped well region that protects the gate corner region in a trench-gated device. The AMOSFET uses the A-face conduction along a trench sidewall in addition to a buried channel layer extending across portions of the semiconductor mesas defining the trench. A doped well extends from at least one of the mesas to a depth within the current spreading layer that is greater than the depth of the trench. A current spreading layer extends between the semiconductor mesas beneath the bottom of the trench to reduce junction resistance in the on-state. A buffer layer between the trench and the deep well further provides protection from field crowding at the trench corner.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 11, 2009
    Applicant: Cree, Inc.
    Inventors: Qingchun Zhang, Anant Agarwal, Charlotte Jonas
  • Publication number: 20090121319
    Abstract: A bipolar junction transistor includes a collector having a first conductivity type, a drift layer having the first conductivity type on the collector, a base layer on the drift layer and having a second conductivity type opposite the first conductivity type, a lightly doped buffer layer having the first conductivity type on the base layer and forming a p-n junction with the base layer, and an emitter mesa having the first conductivity type on the buffer layer and having a sidewall. The buffer layer includes a mesa step adjacent to and spaced laterally apart from the sidewall of the emitter mesa, and a first thickness of the buffer layer beneath the emitter mesa is greater than a second thickness of the buffer layer outside the mesa step.
    Type: Application
    Filed: September 9, 2008
    Publication date: May 14, 2009
    Inventors: Qingchun Zhang, Anant K. Agarwal
  • Publication number: 20090072242
    Abstract: Insulated gate bipolar conduction transistors (IBCTs) are provided. The IBCT includes a drift layer having a first conductivity type. An emitter well region is provided in the drift layer and has a second conductivity type opposite the first conductivity type. A well region is provided in the drift layer and has the second conductivity type. The well region is spaced apart from the emitter well region. A space between the emitter well region and the well region defines a JFET region of the IBCT. An emitter region is provided in the well region and has the first conductivity type and a buried channel layer is provided on the emitter well region, the well region and the JFET region and has the first conductivity type. Related methods of fabrication are also provided.
    Type: Application
    Filed: September 18, 2007
    Publication date: March 19, 2009
    Inventor: Qingchun Zhang
  • Patent number: 7476932
    Abstract: A U-shape Metal-Oxide-Semiconductor (UMOS) device comprises a P-base layer, an N+ source region disposed in the P-base layer where the source region has a first surface coplanar with a first surface of the P-base layer, a dielectric layer extending through the P-base layer and forming a U-shape trench having side walls and floor enclosing a trench interior region, a conducting gate material filling the trench interior region, a first accumulation channel layer disposed along a first side wall of the U-shape trench and in contact with the source region and a first side wall of the U-shape trench, a P-junction gate disposed adjacent to the dielectric layer floor and in proximity to the first accumulation channel layer, and an N-drift region where the P-junction gate is disposed between the dielectric layer and the N-drift region.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 13, 2009
    Assignee: The Boeing Company
    Inventors: Qingchun Zhang, Hsueh-Rong Chang
  • Publication number: 20080296771
    Abstract: A silicon carbide power device is fabricated by forming a p-type silicon carbide epitaxial layer on an n-type silicon carbide substrate, and forming a silicon carbide power device structure on the p-type silicon carbide epitaxial layer. The n-type silicon carbide substrate is at least partially removed, so as to expose the p-type silicon carbide epitaxial layer. An ohmic contact is formed on at least some of the p-type silicon carbide epitaxial layer that is exposed. By at least partially removing the n-type silicon carbide substrate and forming an ohmic contact on the p-type silicon carbide epitaxial layer, the disadvantages of using a p-type substrate may be reduced or eliminated. Related structures are also described.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Mrinal Kanti Das, Qingchun Zhang, John M. Clayton, JR., Matthew Donofrio
  • Publication number: 20080191304
    Abstract: A power diode having a silicon mesa atop the drift region includes a first contact positioned on the silicon mesa. The silicon mesa is highly doped p-type or n-type, and the anode may be formed on the mesa. The mesa may include two separate silicon layers, one of which is a Schottky barrier height layer. Under a forward bias, the silicon mesa provides carriers to achieve desirable forward current characteristics. The substrate has a significantly reduced thickness. The diode achieves reverse voltage blocking capability by implanting junction barrier Schottky wells within the body of the diode. The diode utilizes a deeper portion of the drift region to support the reverse bias. The method of forming the diode with a silicon mesa includes forming the mesa within a window on the diode or by thermally or mechanically bonding the silicon layer to the drift region.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 14, 2008
    Applicant: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu
  • Publication number: 20080105949
    Abstract: An insulated gate bipolar transistor (IGBT) includes a substrate having a first conductivity type, a drift layer having a second conductivity type opposite the first conductivity type, and a well region in the drift layer and having the first conductivity type. An epitaxial channel adjustment layer is on the drift layer and has the second conductivity type. An emitter region extends from a surface of the epitaxial channel adjustment layer through the epitaxial channel adjustment layer and into the well region. The emitter region has the second conductivity type and at least partially defines a channel region in the well region adjacent to the emitter region. A gate oxide layer is on the channel region, and a gate is on the gate oxide layer. Related methods are also disclosed.
    Type: Application
    Filed: June 18, 2007
    Publication date: May 8, 2008
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Charlotte Jonas, Anant K. Agarwal
  • Publication number: 20080085591
    Abstract: In accordance with an embodiment of the present invention, a gate structure for a U-shape Metal-Oxide-Semiconductor (UMOS) device includes a dielectric layer formed into a U-shape having side walls and a floor to form a trench surrounding a dielectric layer interior region, a doped poly-silicon layer deposited adjacent to the dielectric layer within the dielectric layer interior region where the doped poly-silicon layer has side walls and a floor surrounding a doped poly-silicon layer interior region, a first metal layer deposited on the doped poly-silicon layer on a side opposite from the dielectric layer where the first metal layer has side walls and a floor surrounding a first metal layer interior region, and an undoped poly-silicon layer deposited to fill the first metal layer interior region.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 10, 2008
    Inventors: Mercedes P. Gomez, Emil M. Hanna, Wen-Ben Luo, Qingchun Zhang
  • Publication number: 20080079065
    Abstract: A U-shape Metal-Oxide-Semiconductor (UMOS) device comprises a P-base layer, an N+ source region disposed in the P-base layer where the source region has a first surface coplanar with a first surface of the P-base layer, a dielectric layer extending through the P-base layer and forming a U-shape trench having side walls and floor enclosing a trench interior region, a conducting gate material filling the trench interior region, a first accumulation channel layer disposed along a first side wall of the U-shape trench and in contact with the source region and a first side wall of the U-shape trench, a P-junction gate disposed adjacent to the dielectric layer floor and in proximity to the first accumulation channel layer, and an N-drift region where the P-junction gate is disposed between the dielectric layer and the N-drift region.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Qingchun Zhang, Hsueh-Rong Chang
  • Publication number: 20080029838
    Abstract: A semiconductor device includes a semiconductor layer having a first conductivity type, a metal contact on the semiconductor layer and forming a Schottky junction with the semiconductor layer, and a semiconductor region in the semiconductor layer. The semiconductor region and the semiconductor layer form a first p-n junction in parallel with the Schottky junction. The first p-n junction is configured to generate a depletion region in the semiconductor layer adjacent the Schottky junction when the Schottky junction is reversed biased to thereby limit reverse leakage current through the Schottky junction. The first p-n junction is further configured such that punch-through of the first p-n junction occurs at a lower voltage than a breakdown voltage of the Schottky junction when the Schottky junction is reverse biased.
    Type: Application
    Filed: August 1, 2006
    Publication date: February 7, 2008
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal