Patents by Inventor Qingqing Liang

Qingqing Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130001665
    Abstract: The present disclosure discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer comprising a semiconductor substrate, a buried insulating layer, and a semiconductor layer, the buried insulating layer being disposed on the semiconductor substrate, and the semiconductor layer being disposed on the buried insulating layer; a gate stack disposed on the semiconductor layer; a source region and a drain region embedded in the semiconductor layer and disposed on both sides of the gate stack; and a channel region embedded in the semiconductor layer and sandwiched between the source region and the drain region, wherein the MOSFET further comprises a back gate and a counter doped region, and wherein the back gate is embedded in the semiconductor substrate, the counter doped region is disposed under the channel region and embedded in the back gate, and the back gate has a doping type opposite to that of the counter doped region.
    Type: Application
    Filed: August 2, 2011
    Publication date: January 3, 2013
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang
  • Publication number: 20130001690
    Abstract: The present application provides a MOSFET and a method for manufacturing the same. The MOSFET comprises: a semiconductor substrate; a first buried insulating layer on the semiconductor substrate; a back gate formed in a first semiconductor layer which is on the first buried insulating layer; a second buried insulating layer on the first semiconductor layer; source/drain regions formed in a second semiconductor layer which is on the second buried insulating layer; a gate on the second semiconductor layer; and electrical contacts on the source/drain regions, the gate and the back gate, wherein the back gate is only under a channel region and one of the source/drain regions and not under the other of the source/drain regions, and a common electrical contact is formed between the back gate and the one of the source/drain regions. The MOSFET improves an effect of suppressing short channel effects by an asymmetric back gate, and reduces a footprint on a wafer by using the common conductive via.
    Type: Application
    Filed: August 1, 2011
    Publication date: January 3, 2013
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8343818
    Abstract: A method of forming an electrical device is provided that includes forming at least one semiconductor device on a first semiconductor layer of the SOI substrate. A handling structure is formed contacting the at least one semiconductor device and the first semiconductor layer. A second semiconductor layer and at least a portion of the dielectric layer of the SOI substrate are removed to provide a substantially exposed surface of the first semiconductor layer. A retrograded well may be formed by implanting dopant through the substantially exposed surface of the first semiconductor layer into a first thickness of the semiconductor layer that extends from the substantially exposed surface of the semiconductor layer, wherein a remaining thickness of the semiconductor layer is substantially free of the retrograded well dopant. The retrograded well may be laser annealed.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Zhijiong Luo, Qingqing Liang, Haizhou Yin
  • Publication number: 20120326231
    Abstract: The present application discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer, which comprises a semiconductor substrate, a buried insulator layer, and a semiconductor layer, the buried insulator layer being disposed on the semiconductor substrate, and the semiconductor layer being disposed on the buried insulator layer; a gate stack, which is disposed on the semiconductor layer; a source region and a drain region, which are disposed in the semiconductor layer and on opposite sides of the gate stack; and a channel region, which are disposed in the semiconductor layer and sandwiched by the source region and the drain region, wherein the MOSFET further comprises a back gate disposed in the semiconductor substrate, and wherein the back gate comprises first, second and third compensation doping regions, the first compensation doping region is disposed under the source region and the drain region; the second compensation doping region extends in a direction away fro
    Type: Application
    Filed: August 1, 2011
    Publication date: December 27, 2012
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang
  • Publication number: 20120326155
    Abstract: The present application discloses a semiconductor structure and method for manufacturing the same. The semiconductor structure comprises: an SOI substrate and a MOSFET formed on the SOI substrate, wherein the SOI substrate comprises, in a top-down fashion, an SOI layer, a first buried insulator layer, a buried semiconductor layer, a second buried insulator layer, and a semiconductor substrate, the buried semiconductor layer including a backgate region including a portion of the buried semiconductor layer doped with a dopant of a first polarity; the MOSFET comprises a gate stack and source/drain regions, the gate stack being formed on the SOI layer, and the source/drain regions being formed in the SOI layer at opposite sides of the gate stack; and the backgate region includes a counter-doped region, the counter-doped region is self-aligned with the gate stack and includes a dopant of a second polarity, and the second polarity is opposite to the first polarity.
    Type: Application
    Filed: August 2, 2011
    Publication date: December 27, 2012
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Publication number: 20120319185
    Abstract: The present invention provides a NAND gate structure, comprising: a substrate; a gate insulation layer formed on the substrate; a source/drain region formed in the substrate; a middle gate formed on the gate insulator layer, a first gate and a second gate on each side of the middle gate, first sidewall spacers between the first gate and the middle gate and between the second gate and the middle gate, and second sidewall spacers outside the first gate and the second gate, wherein, a first contact hole region is provided on the middle gate, second contact hole regions are provided respectively on the first gate and the second gate, and the first contact hole region and the second contact hole regions are in staggered arrangement. The present invention proposes a new NAND structure and a method of manufacturing the same. With the NAND structure, about 30-50% area of the chip may be effectively reduced.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 20, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Publication number: 20120309139
    Abstract: An embodiment of the present invention discloses a method for manufacturing a FinFET, when a fin is formed, a dummy gate across the fin is formed on the fin, a source/drain opening is formed in both the cover layer and the first dielectric layer at both sides of the dummy gate, the source/drain opening is at both sides of the fin covered by the dummy gate and is an opening region surrounded by the cover layer and the first dielectric layer around it. In the formation of a source/drain region in the source/drain opening, stress is generated due to lattice mismatching, and applied to the channel due to the limitation by the source/drain opening in the first dielectric layer, thereby increasing the carrier mobility of the device, and improving the performance of the device.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 6, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong
  • Publication number: 20120286337
    Abstract: Embodiments of the present invention disclose a method for manufacturing a Fin Field-Effect Transistor. When a fin is formed, a dummy gate across the fin is formed on the fin, a spacer is formed on sidewalls of the dummy gate, and a cover layer is formed on the first dielectric layer and on the fin outside the dummy gate and the spacer, then, an self-aligned and elevated source/drain region is formed at both sides of the dummy gate by the spacer, wherein the upper surfaces of the gate and the source/drain region are in the same plane. The upper surfaces of the gate and the source/drain region are in the same plane, making alignment of the contact plug easier; and the gate and the source/drain region are separated by the spacer, thereby improving alignment accuracy, solving inaccurate alignment of the contact plug, and improving device AC performance.
    Type: Application
    Filed: August 10, 2011
    Publication date: November 15, 2012
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Publication number: 20120290998
    Abstract: The present application discloses a device performance prediction method and a device structure optimization method. According to an embodiment of the present invention, a set of structural parameters and/or process parameters for a semiconductor device constitutes a parameter point in a parameter space, and a behavioral model library is established with respect to a plurality of discrete predetermined parameter points in the parameter space, and the predetermined parameter points being associated with their respective performance indicator values in the behavioral model library.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 15, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong, Meng Li
  • Publication number: 20120286373
    Abstract: Gates structures and methods for manufacturing the same are disclosed. In an example, the gate structure comprises a gate stack formed on a semiconductor substrate, the gate stack comprising a high-K dielectric layer and a metal gate electrode from bottom to top; a first dielectric layer on sidewalls of the gate stack, the first dielectric layer serving as first sidewall spacers; and a sacrificial metal layer on the first dielectric layer, the sacrificial metal layer serving as second sidewall spacers. The sacrificial metal layer in the gate structure reduces a thickness of an interfacial oxide layer in the step of annealing. The gate structure may be applied to a semiconductor device having a small size because the gate dielectric layer has a low EOT value.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 15, 2012
    Inventors: Huicai Zhong, Zhijiong Luo, Qingqing Liang
  • Publication number: 20120281468
    Abstract: The present disclosure provides a semiconductor device and a semiconductor memory device. The semiconductor device can be used as a memory cell, and may comprise a first P-type semiconductor layer, a first N-type semiconductor layer, a second P-type semiconductor layer, and a second N-type semiconductor layer arranged in sequence. A first data state may be stored in the semiconductor device by applying a forward bias, which is larger than a punch-through voltage VBO, between the first P-type semiconductor layer and the second N-type semiconductor layer. A second data state may be stored in the semiconductor device by applying a reverse bias, which is approaching to the reverse breakdown region of the semiconductor device, between the first P-type semiconductor layer and the second N-type semiconductor layer. In this way, the semiconductor device may be effectively used for data storage. The semiconductor memory device comprises an array of memory cells consisted of the semiconductor devices.
    Type: Application
    Filed: August 10, 2011
    Publication date: November 8, 2012
    Inventors: Qingqing Liang, Xiaodong Tong, Huicai Zhong, Huilong Zhu
  • Publication number: 20120273886
    Abstract: An embedded source/drain MOS transistor and a formation method thereof are provided. The embedded source/drain MOS transistor comprises: a semiconductor substrate; a gate structure on the semiconductor substrate; and a source/drain stack embedded in the semiconductor substrate at both sides of the gate structure with an upper surface of the source/drain stack being exposed, wherein the source/drain stack comprises a dielectric layer and a semiconductor layer above the dielectric layer. The present invention can cut off the path for the leakage current from the source region and the drain region to the semiconductor substrate, thereby reducing the leakage current from the source region and the drain region to the semiconductor substrate.
    Type: Application
    Filed: August 12, 2011
    Publication date: November 1, 2012
    Inventors: Huicai Zhong, Chao Zhao, Qingqing Liang
  • Publication number: 20120267725
    Abstract: Semiconductor structures and methods for manufacturing the same are disclosed. The semiconductor structure comprises: a gate stack formed on a semiconductor substrate; a super-steep retrograde island embedded in said semiconductor substrate and self-aligned with said gate stack; and a counter doped region embedded in said super-steep retrograde island, wherein said counter doped region has a doping type opposite to a doping type of said super-steep retrograde island. The semiconductor structures and the methods for manufacturing the same facilitate alleviating short channel effects.
    Type: Application
    Filed: April 26, 2011
    Publication date: October 25, 2012
    Inventors: Huilong Zhu, Binneng Wu, Weiping Xiao, Hao Wu, Qingqing Liang
  • Publication number: 20120261790
    Abstract: The present invention provides a substrate structure, a semiconductor device, and a manufacturing method thereof. The substrate structure comprises: a semiconductor substrate; and a first isolation region, wherein the first isolation region comprises: a first trench extending through the semiconductor substrate; and a first dielectric layer filling the first trench. Due to the isolation region extending through the substrate, it is possible to make device structures on both surfaces of the substrate, so as to increase the utilization of the substrate and the integration degree of the devices.
    Type: Application
    Filed: March 4, 2011
    Publication date: October 18, 2012
    Inventors: Huicai Zhong, Qingqing Liang
  • Publication number: 20120261759
    Abstract: A semiconductor device comprising: a semiconductor substrate; an STI embedded into the semiconductor substrate and having at least a semiconductor opening region; a channel region in the semiconductor opening region; a gate stack comprising a gate dielectric layer and a gate conductive layer and located above the channel region; and source/drain regions located on both sides of the channel region, and comprising first seed layers on opposite sides of the gate stack adjacent to the STI, wherein the upper surface of the STI is higher than or sufficiently closed to the upper surface of the gate dielectric layer. The semiconductor device and the method for manufacturing the same can enhance the stress of the channel region so as to improve device performance.
    Type: Application
    Filed: June 1, 2011
    Publication date: October 18, 2012
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo, Qingqing Liang
  • Publication number: 20120261727
    Abstract: A semiconductor device and a method for manufacturing a local interconnect structure for a semiconductor device is provided. The method includes forming removable sacrificial sidewall spacers between sidewall spacers and outer sidewall spacers on two sides of a gate on a semiconductor substrate, and forming contact through-holes at source/drain regions in the local interconnect structure between the sidewall spacer and the outer sidewall spacer on the same side of the gate immediately after removing the sacrificial sidewall spacers. Once the source/drain through-holes are filled with a conductive material to form contact vias, the height of the contact vias shall be same as the height of the gate. The contact through-holes, which establish the electrical connection between a subsequent first layer of metal wiring and the source/drain regions or the gate region at a lower level in the local interconnect structure, shall be made in the same depth.
    Type: Application
    Filed: February 27, 2011
    Publication date: October 18, 2012
    Inventors: Huicai Zhong, Qingqing Liang
  • Patent number: 8278721
    Abstract: The invention provides a method for forming a contact plug, comprising: forming a gate, a sidewall spacer, a sacrificial sidewall spacer, a source region and a drain region on a substrate, wherein the sidewall spacer is formed around the gate, the sacrificial sidewall spacer is formed over the sidewall spacer, and the source region and the drain region are formed within the substrate and on respective sides of the gate; forming an interlayer dielectric layer, with the gate, the sidewall spacer and the sacrificial sidewall spacer being exposed; removing the sacrificial sidewall spacer to form a contact space, the sacrificial sidewall spacer material being different from that of the gate, the sidewall spacer and the interlayer dielectric layer; forming a conducting layer to fill the contact space; and cutting off the conducting layer, to form at least two conductors connected to the source region and the drain region respectively.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 2, 2012
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang
  • Patent number: 8269307
    Abstract: The invention provides a STI structure and a method for manufacturing the same. The STI includes a semiconductor substrate; a first trench formed on the upper surface of the semiconductor substrate and filled with an epitaxial layer, wherein the upper surface of the epitaxial layer is higher than that of the semiconductor substrate; and a second trench formed on the epitaxial layer and filled with a first dielectric layer, wherein the upper surface of the first dielectric layer is flush with that of the epitaxial layer, and the width of the second trench is smaller than that of the first trench. The invention reduces the influences of divots on performance of the semiconductor device.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: September 18, 2012
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Haizhou Yin, Qingqing Liang, Huilong Zhu
  • Publication number: 20120223398
    Abstract: The present invention relates to a method for manufacturing a contact and a semiconductor device having said contact. The present invention proposes to form first a trench contract of relatively large size, then to form one or more dielectric layer(s) within the trench contact, and then to remove the upper part of the dielectric layer(s) and to fill the same with a conductive material. The use of such a method makes it easy to form a trench contact of relatively large size which is easy for manufacturing; besides, since dielectric layer(s) is/are formed in the trench contact, thence capacitance between a source/drain trench contact and a gate electrode is reduced accordingly.
    Type: Application
    Filed: February 27, 2011
    Publication date: September 6, 2012
    Inventors: Huicai Zhong, Qingqing Liang
  • Publication number: 20120223331
    Abstract: A semiconductor device comprises: a semiconductor substrate located on an insulating layer; and an insulator located on the insulating layer and embedded in the semiconductor substrate, wherein the insulator applies stress therein to the semiconductor substrate. A method for forming a semiconductor device comprises: forming a semiconductor substrate on an insulating layer; forming a cavity within the semiconductor substrate so as to expose the insulating layer; forming an insulator in the cavity, wherein the insulator applies stress therein to the semiconductor substrate. It facilitates the reduction of the short channel effect, the resistance of source/drain regions and parasitic capacitance.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 6, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin