Patents by Inventor Qingqing Liang

Qingqing Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8513085
    Abstract: Threshold voltage controlled semiconductor structures are provided in which a conformal nitride-containing liner is located on at least exposed sidewalls of a patterned gate dielectric material having a dielectric constant of greater than silicon oxide. The conformal nitride-containing liner is a thin layer that is formed using a low temperature (less than 500° C.) nitridation process.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Brian J. Greene, Effendi Leobandung, Qingqing Liang, Edward P. Maciejewski, Yanfeng Wang
  • Patent number: 8513780
    Abstract: The present invention discloses an inter-level dielectric layer for a semiconductor device, a method for manufacturing the same and a semiconductor device having said inter-level dielectric layer. The method lies in forming non-interconnected holes within a dielectric layer, and these holes may be filled with porous low-k dielectric material with a much lower dielectric constant, or forming holes within the dielectric layer by filling the upper parts of the holes. The inter-level dielectric layer in such a structure has a much lower dielectric constant, reduces RC delay between devices of integrated circuits and also is easy to integrate; besides, since the holes within the dielectric layer are non-interconnected, they shall not cause change to the dielectric constant of the dielectric material or a short circuit between wires, thus the device shall have better stability and reliability which then improve performance of the circuit.
    Type: Grant
    Filed: February 26, 2011
    Date of Patent: August 20, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang
  • Patent number: 8513742
    Abstract: The present invention relates to a method for manufacturing a contact and a semiconductor device having said contact. The present invention proposes to form first a trench contract of relatively large size, then to form one or more dielectric layer(s) within the trench contact, and then to remove the upper part of the dielectric layer(s) and to fill the same with a conductive material. The use of such a method makes it easy to form a trench contact of relatively large size which is easy for manufacturing; besides, since dielectric layer(s) is/are formed in the trench contact, thence capacitance between a source/drain trench contact and a gate electrode is reduced accordingly.
    Type: Grant
    Filed: February 27, 2011
    Date of Patent: August 20, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Science
    Inventors: Huicai Zhong, Qingqing Liang
  • Patent number: 8492247
    Abstract: Programmable field effect transistors (FETs) are provided using high-k dielectric metal gate Vt shift effect and methods of manufacturing the same. The method of controlling Vt shift in a high-k dielectric metal gate structure includes applying a current to a gate contact of the high-k dielectric metal gate structure to raise a temperature of a metal forming a gate stack. The temperature is raised beyond a Vt shift temperature threshold for providing an on-state.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Eduard A. Cartier, Qingqing Liang, Yue Liang, Yanfeng Wang
  • Patent number: 8492842
    Abstract: A method of forming an electrical device is provided that includes forming at least one semiconductor device on a first semiconductor layer of the SOI substrate. A handling structure is formed contacting the at least one semiconductor device and the first semiconductor layer. A second semiconductor layer and at least a portion of the dielectric layer of the SOI substrate are removed to provide a substantially exposed surface of the first semiconductor layer. A retrograded well may be formed by implanting dopant through the substantially exposed surface of the first semiconductor layer into a first thickness of the semiconductor layer that extends from the substantially exposed surface of the semiconductor layer, wherein a remaining thickness of the semiconductor layer is substantially free of the retrograded well dopant. The retrograded well may be laser annealed.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Zhijiong Luo, Qingqing Liang, Haizhou Yin
  • Patent number: 8492210
    Abstract: The invention relates to a transistor, a semiconductor device comprising the transistor and manufacturing methods for the transistor and the semiconductor device. The transistor according to the invention comprises: a substrate comprising at least a base layer, a first semiconductor layer, an insulating layer and a second semiconductor layer stacked sequentially; a gate stack formed on the second semiconductor layer; a source region and a drain region located on both sides of the gate stack respectively; a back gate comprising a back gate dielectric and a back gate electrode formed by the insulating layer and the first semiconductor layer, respectively; and a back gate contact formed on a portion of the back gate electrode. The back gate contact comprises an epitaxial part raised from the surface of the back gate electrode, and each of the source region and the drain region comprises an epitaxial part raised from the surface of the second semiconductor layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong
  • Patent number: 8492206
    Abstract: A semiconductor device structure and a method for manufacturing the same are disclosed. In one embodiment, the method comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction crossing the first direction on the semiconductor substrate, the gate line intersecting the fin via a gate dielectric layer; forming a dielectric spacer surrounding the gate line; forming a conductive spacer surrounding the dielectric spacer; and performing inter-device electrical isolation at a predetermined region, wherein isolated portions of the gate line form gate electrodes of respective unit devices, and isolated portions of the conductive spacer form contacts of the respective unit devices.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: July 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Jun Luo, Qingqing Liang, Huilong Zhu
  • Patent number: 8481379
    Abstract: An embodiment of the present invention discloses a method for manufacturing a FinFET, when a fin is formed, a dummy gate across the fin is formed on the fin, a source/drain opening is formed in both the cover layer and the first dielectric layer at both sides of the dummy gate, the source/drain opening is at both sides of the fin covered by the dummy gate and is an opening region surrounded by the cover layer and the first dielectric layer around it. In the formation of a source/drain region in the source/drain opening, stress is generated due to lattice mismatching, and applied to the channel due to the limitation by the source/drain opening in the first dielectric layer, thereby increasing the carrier mobility of the device, and improving the performance of the device.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: July 9, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong
  • Publication number: 20130153913
    Abstract: A transistor, a method for fabricating a transistor, and a semiconductor device comprising the transistor are disclosed in the present invention. The method for fabricating a transistor may comprise: providing a substrate and forming a first insulating layer on the substrate; defining a first device area on the first insulating layer; forming a spacer surrounding the first device area on the first insulating layer; defining a second device area on the first insulating layer, wherein the second device area is isolated from the first device area by the spacer; and forming transistor structures in the first and second device area, respectively. The method for fabricating a transistor of the present invention greatly reduces the space required for isolation, significantly decreases the process complexity, and greatly reduces fabricating cost.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 20, 2013
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8466500
    Abstract: The present invention discloses a semiconductor device and a method for manufacturing the same, and relates to the field of semiconductor manufacturing. According to the present invention, the semiconductor device comprises: a semiconductor substrate; a gate region located above the semiconductor substrate; S/D regions located at both sides of the gate region and made of a stress material; wherein a concentrated stress region is formed between the gate region and the semiconductor substrate, and the concentrated stress region comprises an upper SOI layer adjacent to the gate region above, and a lower stress release layer adjacent to the semiconductor substrate below. The present invention applies to the manufacturing of a MOSFET.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 18, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8460988
    Abstract: A method of manufacturing a semiconductor device is provided, in which after forming a gate stack and a first spacer thereof, a second spacer and a third spacer are formed; and then an opening is formed between the first spacer and the third spacer by removing the second spacer. The range of the formation for the raised active area 220 is limited by forming an opening 214 between the first spacer 208 and the third spacer 212. The raised active area 220 is formed in the opening 214 in a self-aligned manner, so that a better profile of the raised active area 220 may be achieved and the possible shorts between adjacent devices caused by an unlimited manner may be avoided. Moreover, based on such a manufacturing method, it is easy to make the gate electrode 204 to be flushed with the raised active area 220, and is also easy to implement the dual stress nitride process so as to increase the mobility of the device.
    Type: Grant
    Filed: September 26, 2010
    Date of Patent: June 11, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang
  • Publication number: 20130140624
    Abstract: The invention discloses a semiconductor structure comprising: a substrate, a conductor layer, and a dielectric layer surrounding the conductor layer on the substrate; a first insulating layer covering both of the conductor layer and the dielectric layer; a gate conductor layer formed on the first insulating layer, and a dielectric layer surrounding the gate conductor layer; and a second insulating layer covering both of the gate conductor layer and the dielectric layer surrounding the gate conductor layer; wherein a through hole filled with a semiconductor material penetrates through the gate conductor layer perpendicularly, the bottom of the through hole stops on the conductor layer, and a first conductor plug serving as a drain/source electrode is provided on the top of the through hole; and a second conductor plug serving as a source/drain electrode electrically contacts the conductor layer, and a third conductor plug serving as a gate electrode electrically contacts the gate conductor layer.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 6, 2013
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8455323
    Abstract: There is provided a method for manufacturing a semiconductor wafer, comprising: performing heating so that metals dissolve into semiconductors of the wafer to form a semiconductor-metal compound; and performing cooling so that the formed semiconductor-metal compound retrogradely melt to form a mixture of the metals and the semiconductors. According to embodiments of the present invention, it is possible to achieve wafers of a high purity applicable to the semiconductor manufacture.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 4, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Chao Zhao
  • Patent number: 8456169
    Abstract: A test structure is provided that utilizes a time division sampling technique along with a statistical modeling technique that uses metal-oxide-semiconductor field effect transistor (MOSFET) saturation and linear characteristics to measure the mean (average) and sigma (statistical characterization of the variation) of a large population of electrical characteristics of electrical devices (e.g., integrated circuits) at high speed. Such electrical characteristics or sampling parameters include drive currents, leakage, resistances, etc.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Manjul Bhushan, Mark B. Ketchen, Qingqing Liang, Edward P. Maciejewski
  • Patent number: 8441045
    Abstract: The present application discloses a semiconductor device and a method of manufacturing the same. Wherein, the semiconductor device comprises: a semiconductor substrate; a stressor embedded in the semiconductor substrate; a channel region disposed on the stressor; a gate stack disposed on the channel region; a source/drain region disposed on two sides of the channel region and embedded in the semiconductor substrate; wherein, surfaces of the stressor comprise a top wall, a bottom wall, and side walls, the side walls comprising a first side wall and a second side wall, the first side wall connecting the top wall and the second side wall, the second side wall connecting the first side wall and the bottom wall, the angle between the first side wall and the second side wall being less than 180°, and the first sidewall and the second side wall being roughly symmetrical with respect to a plane parallel to the semiconductor substrate.
    Type: Grant
    Filed: February 27, 2011
    Date of Patent: May 14, 2013
    Assignee: The Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8440532
    Abstract: In one embodiment, a method of providing a semiconductor device is provided, in which instead of forming isolation regions before the formation of the semiconductor devices, the isolation regions are formed after the semiconductor devices. In one embodiment, the method includes forming a semiconductor device on a semiconductor substrate. A placeholder dielectric is formed on a portion of a first surface of the substrate adjacent to the semiconductor device. A trench is etched into the substrate from a second surface of the substrate that is opposite the first surface of the substrate, wherein the trench terminates on the placeholder dielectric. The trench is filled with a dielectric material.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Publication number: 20130113025
    Abstract: The present invention provides a semiconductor device structure and a method for manufacturing the same. The method comprises: providing a semiconductor substrate, forming a first insulating layer on the surface of the semiconductor substrate; forming a shallow trench isolation embedded in the first insulating layer and the semiconductor substrate; forming a stripe-type trench embedded in the first insulating layer and the semiconductor substrate; forming a channel region in the trench; forming a gate stack line on the channel region and source/drain regions on opposite sides of the channel region. Embodiments of the present invention are applicable to manufacture of semiconductor devices.
    Type: Application
    Filed: February 25, 2011
    Publication date: May 9, 2013
    Inventors: Huicai Zhong, Qingqing Liang
  • Publication number: 20130099315
    Abstract: The present disclosure discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer which comprises a semiconductor substrate, a buried insulating layer, and a semiconductor layer, the buried insulating layer being on the semiconductor substrate, and the semiconductor layer being on the buried insulating layer; a gate stack on the semiconductor layer; a source region and a drain region, which are in the semiconductor layer and on opposite sides of the gate stack; and a channel region, which is in the semiconductor layer and sandwiched by the source region and the drain region, wherein the MOSFET further comprises a back gate, the back gate being located in the semiconductor substrate and having a first doped region in a lower portion of the back gate and a second doped region in an upper portion of the back gate. The MOSFET can adjust the threshold voltage by changing the doping type and doping concentration of the anti-doped region.
    Type: Application
    Filed: November 18, 2011
    Publication date: April 25, 2013
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang
  • Patent number: 8426920
    Abstract: The present application provides a MOSFET and a method for manufacturing the same. The MOSFET comprises: a semiconductor substrate; a first buried insulating layer on the semiconductor substrate; a back gate formed in a first semiconductor layer which is on the first buried insulating layer; a second buried insulating layer on the first semiconductor layer; source/drain regions formed in a second semiconductor layer which is on the second buried insulating layer; a gate on the second semiconductor layer; and electrical contacts on the source/drain regions, the gate and the back gate, wherein the back gate is only under a channel region and one of the source/drain regions and not under the other of the source/drain regions, and a common electrical contact is formed between the back gate and the one of the source/drain regions. The MOSFET improves an effect of suppressing short channel effects by an asymmetric back gate, and reduces a footprint on a wafer by using the common conductive via.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: April 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20130093041
    Abstract: The invention relates to a semiconductor device and a method for manufacturing such a semiconductor device. A semiconductor device according to an embodiment of the invention may comprise: a substrate; a device region located on the substrate; and at least one stress introduction region separated from the device region by an isolation structure, with stress introduced into at least a portion of the at least one stress introduction region, wherein the stress introduced into the at least a portion of the at least one stress introduction region is produced by utilizing laser to illuminate an amorphized portion comprised in the at least one stress introduction region to recrystallize the amorphized portion. The semiconductor device according to an embodiment of the invention produces stress in a simpler manner and thereby improves the performance of the device.
    Type: Application
    Filed: November 30, 2011
    Publication date: April 18, 2013
    Inventors: Qingqing Liang, Huaxiang Yin, Huicai Zhong, Huilong Zhu