Patents by Inventor Quanxi Jia

Quanxi Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8124176
    Abstract: A polymer assisted deposition process for deposition of metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be conformal on a variety of substrates including non-planar substrates. In some instances, the films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: February 28, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Thomas M. McCleskey, Anthony K. Burrell, Quanxi Jia, Yuan Lin
  • Publication number: 20110278040
    Abstract: Elastic conductors made of ribbons of aligned carbon nanotubes embedded in a matrix of poly(dimethylsiloxane) exhibit a stabilized resistance after several cycles of stretching and releasing. The elastic conductors were prepared by drawing a ribbon of carbon nanotubes from an aligned array of carbon nanotubes and positioning on cured poly(dimethylsiloxane). After providing each end of the ribbon with an electrode, a film of uncured poly(dimethylsiloxane) was cast on the ribbon and electrodes. After curing the film an elastic conductor was produced. The electrical resistance of this elastic conductor became stable after a few cycles of stretching and releasing to strains up to 100%.
    Type: Application
    Filed: May 13, 2010
    Publication date: November 17, 2011
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Yingying Zhang, Quanxi Jia
  • Patent number: 8034448
    Abstract: Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO)3Si—(CH2)n—NR1R2) or (SiO)3Si—(CH2)n—NCO; where n is from 1 to 6, and R1 and R2 are each independently H, CH3, or C2H5.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 11, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Huisheng Peng, Yuntian Theodore Zhu, Dean E. Peterson, Quanxi Jia
  • Patent number: 8003571
    Abstract: A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: August 23, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Liliana Stan, Quanxi Jia, Stephen R. Foltyn
  • Publication number: 20110189504
    Abstract: A coating solution including a polymer and a metal selected from scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, boron, aluminum and silicon can be deposited on a substrate and then exposed at elevated temperature to a reducing atmosphere including a gaseous carbon source. Solvent evaporates and the polymer decomposes and a metal carbide film forms on the substrate. Metal carbide films of titanium carbide, vanadium carbide, niobium carbide, tantalum carbide, tungsten carbide, silicon carbide, and several mixed carbides were prepared. X-Ray diffraction patterns of metal carbide films provide evidence of a highly ordered structure and excellent alignment with the substrate. A composite film of niobium carbide and carbon nanotubes was also prepared.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 4, 2011
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Guifu Zou, Hongmei Luo, Quanxi Jia, Thomas Mark McCleskey, Anthony K. Burrell
  • Patent number: 7959889
    Abstract: A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 ?m to about 150 ?m, and a density of less than 20 mg/cm3. Also described is a carbon microtube, having a diameter of at least 10 ?m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: June 14, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Huisheng Peng, Yuntian Theodore Zhu, Dean E. Peterson, Quanxi Jia
  • Publication number: 20110111964
    Abstract: A simplified architecture for a superconducting coated conductor is provided and includes a substrate, a layer of titanium nitride directly upon the substrate, the layer of titanium nitride deposited by ion beam assisted deposition (IBAD), a layer of a buffer material having chemical and structural compatibility with said layer of titanium nitride, the buffer material layer directly upon the IBAD-titanium nitride layer, and a layer of a high temperature superconductive material such as YBCO.
    Type: Application
    Filed: August 4, 2010
    Publication date: May 12, 2011
    Inventors: Quanxi Jia, Vladimir Matias, Alp T. Findikoglu, David M. Feldmann
  • Publication number: 20110102795
    Abstract: Chromatic materials such as polydiacetylene change color in response to a wide variety of environmental stimuli including changes in temperature, pH and chemical or mechanical stress, and have been extensively explored as sensing devices. Here is reported the facile synthesis of carbon nanotube/polydiacetylene nanocomposite fibers which rapidly and reversibly respond to electrical current, with the resulting color change being readily observable with the naked eye. These composite fibers also chromatically respond to a broad spectrum of other stimulations: for example, they exhibit rapid and reversible stress-induced chromatism with negligible elongation. Nanotube/polydiacetylene nanocomposite fibers could have various applications in sensing.
    Type: Application
    Filed: August 25, 2010
    Publication date: May 5, 2011
    Inventors: Huisheng Peng, Dean E. Peterson, Yuntian T. Zhu, Quanxi Jia
  • Publication number: 20110062423
    Abstract: Terahertz radiation source and method of producing terahertz radiation, said source comprising a junction stack, said junction stack comprising a crystalline material comprising a plurality of self-synchronized intrinsic Josephson junctions; an electrically conductive material in contact with two opposing sides of said crystalline material; and a substrate layer disposed upon at least a portion of both the crystalline material and the electrically-conductive material, wherein the crystalline material has a c-axis which is parallel to the substrate layer, and wherein the source emits at least 1 mW of power.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 17, 2011
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Lev Boulaevskii, David M. Feldmann, Quanxi Jia, Alexei Koshelev, Nathan A. Moody
  • Publication number: 20110034600
    Abstract: Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer, a metal precursor having a first metal selected from iron, nickel, cobalt, and molybdenum, and optionally a second metal selected from aluminum and magnesium, and also a binding agent that forms a complex with the first metal and a complex with the second metal. The coated substrate was exposed to a reducing atmosphere at elevated temperature, and then to a hydrocarbon in the reducing atmosphere. The result was decomposition of the polymer and formation of carbon nanotubes on the substrate. The carbon nanotubes were often in the form of an array on the substrate.
    Type: Application
    Filed: December 23, 2009
    Publication date: February 10, 2011
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Hongmei Luo, Qingwen Li, Eve Bauer, Anthony Keiran Burrell, Thomas Mark McCleskey, Quanxi Jia
  • Publication number: 20100324155
    Abstract: A solution of soluble metal, soluble polymer, and a suitable solvent is converted into a gel body having a surface area to volume ratio no greater than 10. The gel body is converted to inorganic foam. Foams of metal oxide, metal nitride foam, metal carbide foam, metal selenide, and elemental metal were prepared. Several of the foams are (a) molybdenum carbide and molybdenum nitride, (b) TiO, (c) copper selenide, (d) copper indium selenide, (e) molybdenum carbide, molybdenum nitride, and platinum, and (f) ruthenium dioxide.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 23, 2010
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Anthony K. Burrell, Thomas M. McCleskey, Quanxi Jia, Eva Bauer, Karen J. Blackmore, Alexander H. Mueller, Matthew Dirmyer
  • Patent number: 7851412
    Abstract: The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition (“IBAD”) techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide (“MgO”) technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: December 14, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Paul N. Arendt, Liliana Stan, Quanxi Jia, Raymond F. DePaula, Igor O. Usov
  • Patent number: 7839499
    Abstract: A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: November 23, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Yixiang Duan, Quanxi Jia, Wenqing Cao
  • Patent number: 7736761
    Abstract: A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: June 15, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Stephen R. Foltyn, Quanxi Jia, Paul N. Arendt, Haiyan Wang
  • Publication number: 20100093547
    Abstract: A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.
    Type: Application
    Filed: October 31, 2006
    Publication date: April 15, 2010
    Inventors: Stephen R. Foltyn, Quanxi Jia, Paul N. Arendt, Haiyan Wang
  • Publication number: 20100047569
    Abstract: Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO)3Si—(CH2)n—NR1R2) or (SiO)3Si—(CH2)n—NCO; where n is from 1 to 6, and R1 and R2 are each independently H, CH3, or C2H5.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 25, 2010
    Inventors: Huisheng Peng, Yuntian Theodore Zhu, Dean E. Peterson, Quanxi Jia
  • Publication number: 20100035019
    Abstract: A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 ?m to about 150 ?m, and a density of less than 20 mg/cm3. Also described is a carbon microtube, having a diameter of at least 10 ?m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Inventors: Huisheng Peng, Yuntian Theodore Zhu, Dean E. Peterson, Quanxi Jia
  • Publication number: 20100029069
    Abstract: Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.
    Type: Application
    Filed: September 11, 2009
    Publication date: February 4, 2010
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Quanxi Jia, Anthony K. Burrell, Eve Bauer, Filip Ronning, Thomas Mark McCleskey, Guifu Zou
  • Publication number: 20100009176
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: March 29, 2005
    Publication date: January 14, 2010
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Patent number: 7608335
    Abstract: A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800° C.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: October 27, 2009
    Assignee: Los Alamos National Security, LLC
    Inventors: Alp T. Findikoglu, Quanxi Jia, Paul N. Arendt, Vladimir Matias, Woong Choi