Patents by Inventor Quanxi Jia

Quanxi Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6602588
    Abstract: A superconductive structure including a dielectric oxide substrate and a thin layer of a rare earth-barium-copper oxide superconducting film thereon, the thin layer including at least two rare earth elements is provided.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: August 5, 2003
    Assignee: The Regents of the University of California
    Inventors: Chuhee Kwon, Quanxi Jia, Stephen R. Foltyn, James L. Smith, Eric J. Peterson, William Larry Hults
  • Publication number: 20030144150
    Abstract: A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer.
    Type: Application
    Filed: February 7, 2003
    Publication date: July 31, 2003
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Quanxi Jia
  • Publication number: 20030132424
    Abstract: A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150° C. to about 300° C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 17, 2003
    Inventors: Lin Song Li, Quanxi Jia
  • Patent number: 6589457
    Abstract: An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: July 8, 2003
    Assignee: The Regents of the University of California
    Inventors: DeQuan Li, Quanxi Jia
  • Publication number: 20030125213
    Abstract: A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
    Type: Application
    Filed: December 17, 2002
    Publication date: July 3, 2003
    Inventors: Chuhee Kwon, Quanxi Jia, Stephen R. Foltyn
  • Patent number: 6541136
    Abstract: A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: April 1, 2003
    Assignee: The Regents of the University of California
    Inventors: Chuhee Kwon, Quanxi Jia, Stephen R. Foltyn
  • Publication number: 20030036483
    Abstract: An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
    Type: Application
    Filed: December 6, 2000
    Publication date: February 20, 2003
    Inventors: Paul N. Arendt, Stephen R. Foltyn, James R. Groves, Terry G. Holesinger, Quanxi Jia
  • Patent number: 6508959
    Abstract: A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150° C. to about 300° C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: January 21, 2003
    Assignee: The Regents of the University of California
    Inventors: Lin Song Li, Quanxi Jia
  • Patent number: 6476413
    Abstract: A high temperature superconducting Josephson junction device with ramp-edge geometry in which silver is combined in a composite with YBa2Cu3O7, yttrium-barium-copper-oxide, to form the electrodes, or PrBa2Cu3O7, praseodymium-barium-copper-oxide, to form the weak link.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: November 5, 2002
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Xin Di Wu, Steven R. Foltyn, David W. Reagor
  • Patent number: 6445024
    Abstract: The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La0.7Sr0.3) MnO3, ferromagnetic electrodes and a SrTiO3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: September 3, 2002
    Assignee: The United States of America, as represented by the Department of Energy
    Inventors: Chuhee Kwon, Quanxi Jia
  • Patent number: 6444336
    Abstract: A dielectric composite material comprising at least two crystal phases of different components with TiO2 as a first component and a material selected from the group consisting of Ba1−xSrxTiO3 where x is from 0.3 to 0.7, Pb1−xCaxTiO3 where x is from 0.4 to 0.7, Sr1−xPbxTiO3 where x is from 0.2 to 0.4, Ba1−xCdxTiO3 where x is from 0.02 to 0.1, BaTi1−xZrxO3 where x is from 0.2 to 0.3, BaTi1−xSnxO3 where x is from 0.15 to 0.3, BaTi1−xHfxO3 where x is from 0.24 to 0.3, Pb1−1.3xLaxTiO3+0.2x where x is from 0.23 to 0.3, (BaTiO3)x(PbFeo0.5Nb0.5O3)1−x where x is from 0.75 to 0.9, (PbTiO3)−(PbCo0.5W0.5O3)1−x where x is from 0.1 to 0.45, (PbTiO3)x(PbMg0.5W0.5O3)1−x where x is from 0.2 to 0.4, and (PbTiO3)x(PbFe0.5Ta0.5O3)1−x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: September 3, 2002
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Brady J. Gibbons, Alp T. Findikoglu, Bae Ho Park
  • Publication number: 20020114957
    Abstract: A dielectric composite material comprising at least two crystal phases of different components with TiO2 as a first component and a material selected from the group consisting of Ba1−xSrxTiO3 where x is from 0.3 to 0.7, Pb1−xCaxTiO3 where x is from 0.4 to 0.7, Sr1−xPbxTiO3 where x is from 0.2 to 0.4, Ba1−xCdxTiO3 where x is from 0.02 to 0.1, BaTi1−xZrxO3 where x is from 0.2 to 0.3, BaTi1−xSnxO3 where x is from 0.15 to 0.3, BaTi1−xHfxO3 where x is from 0.24 to 0.3, Pb1-1.3xLaxTiO3+0.2x where x is from 0.23 to 0.3, (BaTiO3)x(PbFe0.5Nb0.5O3)1−x where x is from 0.75 to 0.9, (PbTiO3)x(PbCo0.5W0.5O3)1−x where x is from 0.1 to 0.45, (PbTiO3)x(PbMg0.5W0.5O3)1−x where x is from 0.2 to 0.4, and (PbTiO3)x(PbFe0.5Ta0.5O3)1−x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 22, 2002
    Inventors: Quanxi Jia, Brady J. Gibbons, Alp T. Findikoglu, Bae Ho Park
  • Patent number: 6383989
    Abstract: Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: May 7, 2002
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Stephen R. Foltyn
  • Publication number: 20020031686
    Abstract: A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide.
    Type: Application
    Filed: September 18, 2001
    Publication date: March 14, 2002
    Inventors: Quanxi Jia, Paul N. Arendt
  • Publication number: 20010056041
    Abstract: Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.
    Type: Application
    Filed: May 29, 2001
    Publication date: December 27, 2001
    Inventors: Quanxi Jia, Stephen R. Foltyn
  • Patent number: 6312819
    Abstract: A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: November 6, 2001
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Paul N. Arendt
  • Patent number: 6045932
    Abstract: A thin film structure including a lanthanum aluminum oxide substrate, a thin layer of homoepitaxial lanthanum aluminum oxide thereon, and a layer of a nonlinear dielectric material thereon the thin layer of homoepitaxial lanthanum aluminum oxide is provided together with microwave and electro-optical devices including such a thin film structure.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: April 4, 2000
    Assignee: The Regents of the Universitiy of California
    Inventors: Quanxi Jia, Alp T. Findikoglu
  • Patent number: 5912068
    Abstract: A process for forming a structure including an epitaxial layer of a oxide material such as yttria-stabilized zirconia on a thick layer of amorphous silicon dioxide having a thickness of at least about 500 Angstroms on a single crystal silicon substrate and the resultant structures derived therefrom are provided.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: June 15, 1999
    Assignee: The Regents of the University of California
    Inventor: Quanxi Jia
  • Patent number: 5587870
    Abstract: The invention relates to a method for forming a high capacitance thin film capacitor comprising forming layers of dielectric material in amorphous, nanocrystalline and polycrystalline configuration and arranging the resulting layers between upper and lower electrodes. The invention further comprises dielectric articles such as capacitors formed in accordance with the method of the invention and includes their use in an electronic circuit.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: December 24, 1996
    Assignee: Research Foundation of State University of New York
    Inventors: Wayne A. Anderson, Quanxi Jia, Junsin Yi, Lin-Huang Chang
  • Patent number: 5585776
    Abstract: In a first embodiment of the invention a layer of ruthenium oxide is reactively deposited onto a substrate, then annealed for TCR adjustment and for stabilization. In a second, bi-layer embodiment of the invention, a layer of tantalum nitride is first reactively deposited onto a substrate, then annealed for stabilization. After a ruthenium oxide layer is reactively deposited onto the annealed tantalum nitride layer, the structure is annealed until a near-zero effective TCR for the bi-layer resistor is achieved. The ruthenium oxide capping layer serves as a barrier against chemical attack.
    Type: Grant
    Filed: November 9, 1993
    Date of Patent: December 17, 1996
    Assignee: Research Foundation of the State University of NY
    Inventors: Wayne Anderson, Franklyn M. Collins, Quanxi Jia, Kaili Jiao, Hoong J. Lee