Patents by Inventor R. Hastings

R. Hastings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11709702
    Abstract: A system and method are described for work conserving, load balancing, and scheduling by a network processor. For example, one embodiment of a system includes a plurality of processing cores, including a scheduling circuit, at least one source processing core that generates at least one task and at least one destination processing core that receives and processes the at least one task, and generates a response. The scheduling circuit of the exemplary system receives the at least one task and conducts a load balancing to select the at least one destination processing core. In an embodiment, the scheduling circuit further detects a critical sequences of tasks, schedules those tasks to be processed by a single destination processing core, and, upon completion of the critical sequence, conducts another load balancing to potentially select a different processing core to process more tasks.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 25, 2023
    Assignee: Intel Corporation
    Inventors: Joseph R. Hasting, William G. Burroughs
  • Patent number: 10929323
    Abstract: Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Ren Wang, Yipeng Wang, Andrew Herdrich, Jr-Shian Tsai, Tsung-Yuan C. Tai, Niall D. McDonnell, Hugh Wilkinson, Bradley A. Burres, Bruce Richardson, Namakkal N. Venkatesan, Debra Bernstein, Edwin Verplanke, Stephen R. Van Doren, An Yan, Andrew Cunningham, David Sonnier, Gage Eads, James T. Clee, Jamison D. Whitesell, Jerry Pirog, Jonathan Kenny, Joseph R. Hasting, Narender Vangati, Stephen Miller, Te K. Ma, William Burroughs
  • Patent number: 10801937
    Abstract: An apparatus for determining a fluid's kinematic viscosity from ultrasonic energy that has passed through the fluid of unknown viscosity along an acoustic path of known length. A computer of the apparatus determines a characteristic frequency of a received electrical signal associated with the ultrasonic energy and measures the fluid's velocity of sound. The kinematic viscosity of the fluid is determined by the computer on a continuous basis based on the characteristic frequency and the sound velocity. A method for determining a fluid's kinematic viscosity.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: October 13, 2020
    Assignee: Sensia LLC
    Inventors: Herbert A. Estrada, Donald R. Augenstein, Bobbie W. Griffith, Calvin R. Hastings
  • Publication number: 20200241915
    Abstract: A system and method are described for work conserving, load balancing, and scheduling by a network processor. For example, one embodiment of a system includes a plurality of processing cores, including a scheduling circuit, at least one source processing core that generates at least one task and at least one destination processing core that receives and processes the at least one task, and generates a response. The scheduling circuit of the exemplary system receives the at least one task and conducts a load balancing to select the at least one destination processing core. In an embodiment, the scheduling circuit further detects a critical sequences of tasks, schedules those tasks to be processed by a single destination processing core, and, upon completion of the critical sequence, conducts another load balancing to potentially select a different processing core to process more tasks.
    Type: Application
    Filed: January 30, 2020
    Publication date: July 30, 2020
    Applicant: Intel Corporation
    Inventors: Joseph R. Hasting, William G. Burroughs
  • Publication number: 20200042479
    Abstract: Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Applicant: Intel Corporation
    Inventors: Ren Wang, Yipeng Wang, Andrew Herdrich, Jr-Shian Tsai, Tsung-Yuan C. Tai, Niall D. McDonnell, Hugh Wilkinson, Bradley A. Burres, Bruce Richardson, Namakkal N. Venkatesan, Debra Bernstein, Edwin Verplanke, Stephen R. Van Doren, An Yan, Andrew Cunningham, David Sonnier, Gage Eads, James T. Clee, Jamison D. Whitesell, Jerry Pirog, Jonathan Kenny, Joseph R. Hasting, Narender Vangati, Stephen Miller, Te K. Ma, William Burroughs
  • Patent number: 10552205
    Abstract: A system and method are described for work conserving, load balancing, and scheduling by a network processor. For example, one embodiment of a system includes a plurality of processing cores, including a scheduling circuit, at least one source processing core that generates at least one task and at least one destination processing core that receives and processes the at least one task, and generates a response. The scheduling circuit of the exemplary system receives the at least one task and conducts a load balancing to select the at least one destination processing core. In an embodiment, the scheduling circuit further detects a critical sequences of tasks, schedules those tasks to be processed by a single destination processing core, and, upon completion of the critical sequence, conducts another load balancing to potentially select a different processing core to process more tasks.
    Type: Grant
    Filed: April 2, 2016
    Date of Patent: February 4, 2020
    Assignee: Intel Corporation
    Inventors: Joseph R. Hasting, William G. Burroughs
  • Patent number: 10445271
    Abstract: Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: October 15, 2019
    Assignee: Intel Corporation
    Inventors: Ren Wang, Namakkal N. Venkatesan, Debra Bernstein, Edwin Verplanke, Stephen R. Van Doren, An Yan, Andrew Cunningham, David Sonnier, Gage Eads, James T. Clee, Jamison D. Whitesell, Yipeng Wang, Jerry Pirog, Jonathan Kenny, Joseph R. Hasting, Narender Vangati, Stephen Miller, Te K. Ma, William Burroughs, Andrew J. Herdrich, Jr-Shian Tsai, Tsung-Yuan C. Tai, Niall D. McDonnell, Hugh Wilkinson, Bradley A. Burres, Bruce Richardson
  • Patent number: 10437638
    Abstract: Apparatus and method for multi-core dynamically-balanced task processing while maintaining task order in chip multiprocessor platforms. One embodiment of an apparatus includes: a distribution circuitry to distribute, among a plurality of processing units, tasks from one or more workflows; a history list to track all tasks distributed by the distribution circuitry; an ordering queue to store one or more sub-tasks received from a first processing unit as a result of the first processing unit processing a first task; and wherein, responsive to a detection that all sub-tasks of the first task have been received and that the first task is the oldest task for a given parent workflow tracked by the history list, all sub-tasks associated with the first task are to be placed in a replay queue to be replayed in the order in which each sub-task was received.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: October 8, 2019
    Assignee: Intel Corporation
    Inventors: William G. Burroughs, Jerry Pirog, Joseph R. Hasting, Te K. Ma
  • Patent number: 10352744
    Abstract: A flowmeter for detecting gas flow rates in a pipe includes a container configured to be attached to the pipe having a channel through which the gas flows, and a plurality of recesses that extend through the container and a plurality of housings, each recess having a housing. The flowmeter includes a plurality of transducers, with one transducer of the plurality of transducers disposed in each housing in each recess, the transducers transmitting ultrasonic signals into and receiving ultrasonic signals from the channel. The flowmeter includes acoustic isolators which acoustically isolate the housings from the container. The flowmeter includes a controller in electrical communication with the plurality of transducers which determines the gas flow rate through the channel by measuring transit times of signals transmitted by and received by the transducers. A method.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: July 16, 2019
    Assignee: Cameron International Corporation
    Inventors: Emanuel J. Gottlieb, Donald R. Augenstein, William R. Freund, Jr., Richard A. Zuckerman, Herbert Estrada, Calvin R. Hastings
  • Patent number: 10281521
    Abstract: Techniques for thermal management of a device under test are discussed. In an example, an apparatus may include a pedestal having a device-specific surface configured to exchange heat with the integrated circuit while the device-specific surface is in contact with a surface of the integrated circuit or separated from the surface of the integrated circuit by a layer of thermally conductive material, and a heat generating element configured to heat the device-specific surface. In certain examples, the pedestal may include a plurality of channels configured to couple to a manifold and to route thermal material from the manifold through an interior of the pedestal for maintaining temperature control of the surface of an integrated circuit under test.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: May 7, 2019
    Assignee: Intel Corporation
    Inventors: David Won-jun Song, James R. Hastings, Akhilesh P. Rallabandi, Morten S. Jensen, Christopher Wade Ackerman, Christopher R. Schroeder, Nader N. Abazarnia, John C. Johnson
  • Publication number: 20180365053
    Abstract: Apparatus and method for multi-core dynamically-balanced task processing while maintaining task order in chip multiprocessor platforms. One embodiment of an apparatus includes: a distribution circuitry to distribute, among a plurality of processing units, tasks from one or more workflows; a history list to track all tasks distributed by the distribution circuitry; an ordering queue to store one or more sub-tasks received from a first processing unit as a result of the first processing unit processing a first task; and wherein, responsive to a detection that all sub-tasks of the first task have been received and that the first task is the oldest task for a given parent workflow tracked by the history list, all sub-tasks associated with the first task are to be placed in a replay queue to be replayed in the order in which each sub-task was received.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 20, 2018
    Inventors: William G. Burroughs, Jerry Pirog, Joseph R. Hasting, Te K. Ma
  • Patent number: 10107658
    Abstract: An ultrasonic flowmeter includes a meter body including a flow passage having wetted surfaces through which fluid flow is to be measured. The flowmeter includes a non-stick coating adhered to the wetted surfaces of the meter body. The flowmeter includes a first transducer and at least a second transducer arranged around the flow passage to transmit and receive ultrasonic energy. The flowmeter includes an electronic unit designed to generate and receive electronic signals from the transducers and to process the signals in order to compute information related to the fluid flow rate through the passage. A method for measuring fluid flow with an ultrasonic flowmeter. A method of making an ultrasonic flowmeter.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: October 23, 2018
    Assignee: Cameron International Corporation
    Inventors: Gregor J. Brown, Donald R. Augenstein, Calvin R. Hastings, William R. Freund, Jr.
  • Publication number: 20180156863
    Abstract: Techniques for thermal management of a device under test are discussed. In an example, an apparatus may include a pedestal having a device-specific surface configured to exchange heat with the integrated circuit while the device-specific surface is in contact with a surface of the integrated circuit or separated from the surface of the integrated circuit by a layer of thermally conductive material, and a heat generating element configured to heat the device-specific surface. In certain examples, the pedestal may include a plurality of channels configured to couple to a manifold and to route thermal material from the manifold through an interior of the pedestal for maintaining temperature control of the surface of an integrated circuit under test.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 7, 2018
    Inventors: David Won-jun Song, James R. Hastings, Akhilesh P. Rallabandi, Morten S. Jensen, Christopher Wade Ackerman, Christopher R. Schroeder, Nader N. Abazarnia, John C. Johnson
  • Publication number: 20170286157
    Abstract: A system and method are described for work conserving, load balancing, and scheduling by a network processor. For example, one embodiment of a system includes a plurality of processing cores, including a scheduling circuit, at least one source processing core that generates at least one task and at least one destination processing core that receives and processes the at least one task, and generates a response. The scheduling circuit of the exemplary system receives the at least one task and conducts a load balancing to select the at least one destination processing core. In an embodiment, the scheduling circuit further detects a critical sequences of tasks, schedules those tasks to be processed by a single destination processing core, and, upon completion of the critical sequence, conducts another load balancing to potentially select a different processing core to process more tasks.
    Type: Application
    Filed: April 2, 2016
    Publication date: October 5, 2017
    Applicant: Intel Corporation
    Inventors: Joseph R. Hasting, William G. Burroughs
  • Patent number: 9728181
    Abstract: A method and apparatus processes multi-channel audio by encoding, transmitting or recording “dry” audio tracks or “stems” in synchronous relationship with time-variable metadata controlled by a content producer and representing a desired degree and quality of diffusion. Audio tracks are compressed and transmitted in connection with synchronized metadata representing diffusion and preferably also mix and delay parameters. The separation of audio stems from diffusion metadata facilitates the customization of playback at the receiver, taking into account the characteristics of local playback environment.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: August 8, 2017
    Assignee: DTS, INC.
    Inventors: Jean-Marc Jot, James D. Johnston, Stephen R. Hastings
  • Publication number: 20170192921
    Abstract: Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 6, 2017
    Inventors: Ren Wang, Yipeng Wang, Andrew J. Herdrich, Jr-Shian Tsai, Tsung-Yuan C. Tai, Niall D. McDonnell, Hugh Wilkinson, Bradley A. Burres, Bruce Richardson, Namakkal N. Venkatesan, Debra Bernstein, Edwin Verplanke, Stephen R. Van Doren, An Yan, Andrew Cunningham, David Sonnier, Gage Eads, James T. Clee, Jamison D. Whitesell, Jerry Pirog, Jonathan Kenny, Joseph R. Hasting, Narender Vangati, Stephen Miller, Te K. Ma, William Burroughs
  • Publication number: 20170003209
    Abstract: An apparatus for determining a fluid's kinematic viscosity from ultrasonic energy that has passed through the fluid of unknown viscosity along an acoustic path of known length. A computer of the apparatus determines a characteristic frequency of a received electrical signal associated with the ultrasonic energy and measures the fluid's velocity of sound. The kinematic viscosity of the fluid is determined by the computer on a continuous basis based on the characteristic frequency and the sound velocity. A method for determining a fluid's kinematic viscosity.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Applicant: Cameron International Corporation
    Inventors: Herbert A. Estrada, Donald R. Augenstein, Bobbie W. Griffith, Calvin R. Hastings
  • Patent number: 9448150
    Abstract: An apparatus for determining a fluid's kinematic viscosity from ultrasonic energy that has passed through the fluid of unknown viscosity along an acoustic path of known length. A computer of the apparatus determines a characteristic frequency of a received electrical signal associated with the ultrasonic energy and measures the fluid's velocity of sound. The kinematic viscosity of the fluid is determined by the computer on a continuous basis based on the characteristic frequency and the sound velocity. A method for determining a fluid's kinematic viscosity.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: September 20, 2016
    Assignee: Cameron International Corporation
    Inventors: Herbert A. Estrada, Donald R. Augenstein, Bobbie W. Griffith, Calvin R. Hastings
  • Publication number: 20160252377
    Abstract: A flowmeter for detecting gas flow rates in a pipe includes a container configured to be attached to the pipe having a channel through which the gas flows, and a plurality of recesses that extend through the container and a plurality of housings. The flowmeter includes a plurality of transducers, with one transducer of the plurality of transducers disposed in each recess. The transducers transmit ultrasonic signals into and receive ultrasonic signals from the channel. The flowmeter includes a controller in electrical communication with the plurality of transducers which determines the gas flow rate through the channel by measuring transit times of signals transmitted by and received by the transducers. A housing for an ultrasonic transducer for a flowmeter which is inserted into a recess of a container that acoustically isolates the housing from the container. A method for detecting gas flow rates in a pipe.
    Type: Application
    Filed: April 21, 2016
    Publication date: September 1, 2016
    Applicant: Cameron International Corporation
    Inventors: Emanuel J. Gottlieb, Donald R. Augenstein, William R. Freund, JR., Richard A. Zuckerman, Herbert Estrada, Calvin R. Hastings
  • Patent number: 9322689
    Abstract: A flowmeter for detecting gas flow rates in a pipe including a container configured to be attached to the pipe having a channel through which the gas flows, and a plurality of recesses that extend through the container and a plurality of housings. Each recess having one housing of the plurality of housings. Each housing having a pressure containing window. The flowmeter includes a plurality of transducers, with one transducer of the plurality of transducers disposed in each housing in each recess. The transducers transmitting ultrasonic signals through the windows into and receiving ultrasonic signals through the windows from the channel. The flowmeter includes acoustic isolators disposed about the housing along the housing's length and between the housings and the container which acoustically isolate the housings from the container.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: April 26, 2016
    Assignee: Cameron International Corporation
    Inventors: Emanuel J. Gottlieb, Donald R. Augenstein, William R. Freund, Jr., Richard A. Zuckerman, Herbert Estrada, Calvin R. Hastings