Patents by Inventor R. Stanley Williams

R. Stanley Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140036262
    Abstract: An apparatus for surface enhanced Raman spectroscopy includes a substrate, a nanostructure and a plasmonic material. The nanostructure and the plasmonic material are integrated together to provide electronic and plasmonic enhancement to a Raman signal produced by electromagnetic radiation scattering from an analyte.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Inventors: Shih-Yuan Wang, Gary Gibson, Zhiyong Li, Alexandre M. Bratkovski, Huei Pei Kuo, Zhang-Lin Zhou, R Stanley Williams
  • Publication number: 20140029002
    Abstract: A sensor for surface enhanced Raman spectroscopy (SERS) sensor includes surfaces and an actuator to adjust an intersurface spacing between the surfaces to contain an analyte and allow the analyte to be released from containment.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Inventors: Shih-Yuan Wang, Zhiyong Li, Alexandre M. Bratkovski, Gary Gibson, Huei Pei Kuo, Zhang-Lin Zhou, Steven J. Barcelo, Ansoon Kim, R Stanley Williams
  • Publication number: 20140027705
    Abstract: A memristor array includes a lower layer of crossbars, upper layer of crossbars intersecting the lower layer of crossbars, memristor cells interposed between intersecting crossbars, and pores separating adjacent memristor cells. A method forming a memristor array is also provided.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Inventors: Jianhua Yang, Minxian Max Zhang, Gilberto Medeiros Ribeiro, R. Stanley Williams
  • Publication number: 20140028347
    Abstract: Implementing logic with memristors may include circuitry with at least three memristors and a bias resistor in a logic cell. One of the at least three memristors is an output memristor within the logic cell and the other memristors of the at least three memristors are input memristors. Each of the at least three memristors and the bias resistor are electrically connected to voltage sources wherein each voltage applied to each of the at least three memristors and the bias resistor and resistance states of the at least three memristors determine a resistance state of the output memristor.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Inventors: Warren Robinett, R. Stanley Williams
  • Publication number: 20140028995
    Abstract: Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a flexible substrate, and an array of spaced apart sensing members formed on a surface of the flexible substrate. Each of the spaced apart sensing members includes a plurality of polygon assemblies. The polygon assemblies are arranged in a controlled pattern on the surface of the flexible substrate such that each of the plurality of polygon assemblies is a predetermined distance from each other of the plurality of polygon assemblies, and each of the plurality of polygon assemblies including collapsible signal amplifying structures controllably positioned in a predetermined geometric shape.
    Type: Application
    Filed: April 20, 2012
    Publication date: January 30, 2014
    Inventors: Alexandre M. Bratkovski, R. Stanley Williams, Zhiyong Li
  • Publication number: 20130334485
    Abstract: Memristive elements are provided that include an active region disposed between a first electrode and a second electrode, the active region including two switching layers formed of a switching material capable of carrying a species of dopants and a conductive layer formed of a dopant source material. Memristive elements also are provided that include two active regions disposed between a first electrode and a second electrode, and a third electrode being disposed between and in electrical contact with both of the active regions. Each of the active regions include a switching layer formed of a switching material capable of carrying a species of dopants and a conductive layer formed of a dopant source material. Multilayer structures including the memristive elements also are provided.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 19, 2013
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Jianhua Yang, Minxian Max Zhang, R. Stanley Williams
  • Patent number: 8611133
    Abstract: A stateful negative differential resistance device includes a first conductive electrode and a second conductive electrode. The device also includes a first material with a reversible, nonvolatile resistance that changes based on applied electrical energy and a second material comprising a differential resistance that is negative in a locally active region. The first material and second material are sandwiched between the first conductive electrode and second conductive electrode. A method for using a stateful NDR device includes applying programming energy to the stateful NDR device to set a state of the stateful NDR device to a predetermined state and removing electrical power from the stateful NDR device. Power-up energy is applied to the stateful NDR device such that the stateful NDR device returns to the predetermined state.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: December 17, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Matthew D. Pickett, Frederick A. Perner, R. Stanley Williams
  • Patent number: 8605488
    Abstract: A capacitive crossbar array includes a first set of conductors and a second set of conductors which intersect to form crosspoints. A nonlinear capacitive device is interposed between a first conductor within the first set and a second conductor within the second set at a crosspoint. The nonlinear capacitive device is configured to store information which is accessible through said first conductor and said second conductor. A method for utilizing a capacitive crossbar array is also provided.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: December 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Dmitri Borisovich Strukov, Gregory S. Snider, R. Stanley Williams
  • Patent number: 8605483
    Abstract: A memristive device is disclosed herein. The device includes a first electrode, a second electrode, and an active region disposed between the first and second electrodes. At least two mobile species are present in the active region. Each of the at least two mobile species is configured to define a separate state variable of the memristive device.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: December 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: R. Stanley Williams, Dmitri Borisovich Strukov, Alexandre M. Bratkovski
  • Publication number: 20130307662
    Abstract: Apparatus and methods related to negative differential resistance (NDR) are provided. An NDR device includes a spaced pair of electrodes and at least two different materials disposed there between. One of the two materials is characterized by negative thermal expansion, while the other material is characterized by positive thermal expansion. The two materials are further characterized by distinct electrical resistivities. The NDR device is characterized by a non-linear electrical resistance curve that includes a negative differential resistance range. The NDR device operates along the curve in accordance with an applied voltage across the pair of electrodes.
    Type: Application
    Filed: February 1, 2011
    Publication date: November 21, 2013
    Inventors: Minxian Max Yang, R. Stanley Williams
  • Publication number: 20130278929
    Abstract: Apparatus, methods, and hollow metal waveguides to perform surface-enhanced Raman spectroscopy are disclosed. An example apparatus includes a hollow metal waveguide to direct Raman photons from an intermediate location within a volume of the hollow metal waveguide toward a distal end of the hollow metal waveguide, and a mirror to direct incident light from a light source to the intermediate location within the volume of the hollow metal waveguide and to direct at least some of the Raman photons toward the distal end.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Inventors: Alexandre M. Bratkovski, R. Stanley Williams, Zhiyong Li
  • Patent number: 8546785
    Abstract: A memristive device includes a first electrode and a second electrode crossing the first electrode at a non-zero angle. An active region is disposed between the first and second electrodes. The active region has defects therein. Graphene or graphite is disposed between the active region and the first electrode and/or between the active region and the second electrode.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: October 1, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Feng Miao, Wei Wu, Shih-Yuan Wang, R. Stanley Williams
  • Patent number: 8547727
    Abstract: A memristive routing device includes a memristive matrix, mobile dopants moving with the memristive matrix in response to programming electrical fields and remaining stable within the memristive matrix in the absence of the programming electrical fields; and at least three electrodes surrounding the memristive matrix. A method for tuning electrical circuits with a memristive device includes measuring a circuit characteristic and applying a programming voltage to the memristive device which causes motion of dopants within the memristive device to alter the circuit characteristic. A method for increasing a switching speed of a memristive device includes drawing dopants from two geometrically separated locations into close proximity to form two conductive regions and then switching the memristive device to a conductive state by applying a programming voltage which rapidly merges the two conductive regions to form a conductive pathway between a source electrode and a drain electrode.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: October 1, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wei Wu, John Paul Strachan, R. Stanley Williams, Marco Florentino, Shih-Yuan Wang, Nathaniel J. Quitoriano, Hans S. Cho, Julien Borghetti, Sagi Varghese Mathai
  • Patent number: 8546898
    Abstract: An optoelectronic memory cell has a transparent top electrode, a photoactive layer, a latching layer, and a bottom electrode. The photoactive layer absorbs photons transmitted through the top electrode and generates charge carriers. During light exposure, the latching layer changes its resistance under an applied electric field in response to the generation of charge carriers in the photoactive layer.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: October 1, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lars Thylen, Alexandre Bratkovski, Shih-Yuan Wang, R. Stanley Williams
  • Publication number: 20130249879
    Abstract: A display matrix may have a resistance switch and a display element formed on a common display substrate. The resistance switch may have a metal insulator transition (MIT) material that has a negative differential resistance (NDR) characteristic that exhibits a discontinuous resistance.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 26, 2013
    Inventors: Matthew D. Pickett, R. Stanley Williams
  • Patent number: 8542071
    Abstract: Chaotic oscillator-based random number generation is described. In an example, a circuit includes a negative differential resistance (NDR) device to receive an alternating current (AC) bias. The circuit further includes a capacitance in parallel with the NDR device, the capacitance having a value such that, in response to a direct current (DC) bias applied to the NDR device and the capacitance, a voltage across the capacitance oscillates with a chaotic period. The circuit further includes a random number generator to generate random numbers using samples of the voltage across the capacitance.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: September 24, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Matthew D Pickett, Gilberto Medeiros Ribeiro, R Stanley Williams
  • Publication number: 20130242637
    Abstract: A memelectronic device may have a first and a second electrode spaced apart by a plurality of materials. A first material may have a memory characteristic exhibited by the first material maintaining a magnitude of an electrically controlled physical property after discontinuing an electrical stimulus on the first material. A second material may have an auxiliary characteristic.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Inventors: Jianhua Yang, Byungjoon Choi, Minxian Max Zhang, Gilberto Medeiros Ribeiro, R. Stanley Williams
  • Publication number: 20130234103
    Abstract: Nanoscale switching devices are disclosed. The devices have a first electrode of a nanoscale width; a second electrode of a nanoscale width; and a layer of an active region disposed between and in electrical contact with the first and second electrodes. The active region contains a switching material capable of carrying a significant amount of defects which can trap and de-trap electrons under electrical bias. The switching material is in an amorphous state. A nanoscale crossbar array containing a plurality of the devices and a method for making the devices are also disclosed.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, R. Stanley Williams, Gilberto Medeiros Ribeiro
  • Patent number: 8530873
    Abstract: An electroforming free memristor includes a first electrode, a second electrode spaced from the first electrode, and a switching layer positioned between the first electrode and the second electrode. The switching layer is formed of a matrix of a switching material and reactive particles that are to react with the switching material during a fabrication process of the memristor to form one or more conductance channels in the switching layer.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: September 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Gilberto Medeiros Ribeiro, R Stanley Williams
  • Patent number: 8530880
    Abstract: A reconfigurable multilayer circuit (400) includes a complimentary metal-oxide-semiconductor (CMOS) layer (210) having control circuitry, logic gates (515), and at least two crossbar arrays (205, 420) which overlie the CMOS layer (210). The at least two crossbar arrays (205, 420) are configured by the control circuitry and form reconfigurable interconnections between the logic gates (515) within the CMOS layer (210).
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Dmitri Borisovich Strukov, R. Stanley Williams, Yevgeniy Eugene Shteyn