Patents by Inventor Rafael Carbunaru

Rafael Carbunaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240075297
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Application
    Filed: October 19, 2023
    Publication date: March 7, 2024
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Publication number: 20240058619
    Abstract: A method for photobiomodulation of tissue includes emitting light from a lead implanted in the tissue using an implanted light source according to a first delivery program; repeatedly estimating an amount, speed, or time of a temperature or temperature change of, or amount of heat generated by, the implanted light source or repeatedly estimating an amount, speed, or time of a temperature or temperature change of tissue receiving the emitted light; and when the estimate exceeds a first threshold value and the light is emitted according to the first delivery program, emitting light from the implanted lead using the implanted light source according to a second delivery program, wherein the second delivery program results in lower heat generation by the implanted light source over a period of time than the first delivery program.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 22, 2024
    Inventors: Changfang Zhu, Rafael Carbunaru
  • Publication number: 20230414949
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Application
    Filed: September 6, 2023
    Publication date: December 28, 2023
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Patent number: 11826573
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: November 28, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Patent number: 11786737
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: October 17, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Publication number: 20230277849
    Abstract: An example of a neurostimulation system may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to program a stimulation device for delivering the neurostimulation according to a stimulation program specifying a present stimulation field set including stimulation field(s) each defined by a set of active electrodes selected from a plurality of electrodes. The stimulation control circuit may be configured to determine the stimulation program and may include field programming circuitry that may be configured to set the present stimulation field set to an initial stimulation field set specifying stimulation fields allowing for the delivery of the neurostimulation to produce an intended effect and to identify an optimal stimulation field set that satisfies one or more optimization criteria by removing stimulation field(s) from the initial stimulation field set.
    Type: Application
    Filed: May 10, 2023
    Publication date: September 7, 2023
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Patent number: 11654285
    Abstract: An example of a neurostimulation system may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to program a stimulation device for delivering the neurostimulation according to a stimulation program specifying a present stimulation field set including stimulation field(s) each defined by a set of active electrodes selected from a plurality of electrodes. The stimulation control circuit may be configured to determine the stimulation program and may include field programming circuitry that may be configured to set the present stimulation field set to an initial stimulation field set specifying stimulation fields allowing for the delivery of the neurostimulation to produce an intended effect and to identify an optimal stimulation field set that satisfies one or more optimization criteria by removing stimulation field(s) from the initial stimulation field set.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: May 23, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Publication number: 20220346698
    Abstract: An example of a system for delivering neurostimulation to a patient and controlling the delivery of neurostimulation using sensors may include a stimulation output circuit, a sensing circuit, and a control circuit. The stimulation output circuit may be configured to deliver the neurostimulation. The sensing circuit may be configured to receive sensed signals from the sensors and to process the sensed signals. The sensing circuit has adjustable settings controlling the processing of the sensed signals. The control circuit may be configured to control the delivery of the neurostimulation using the processed sensed signals and to control the settings of the sensing circuit according to a sequence of sensing blocks each including a set of sensing parameters.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 3, 2022
    Inventors: Rosana Esteller, Rafael Carbunaru, Adarsh Jayakumar, Thien Tich Doan
  • Publication number: 20220241593
    Abstract: Systems and methods for selectable lateral spinal cord stimulation are discussed. An exemplary neuromodulation system includes a programming device and an electrostimulator. The programming device can receive information about placement of at least one lead in a vicinity of a lateral portion of a spinal cord, identify one or more lateral spinal neural targets based on the information about placement of the at least one lead, and receive a user selection from selectable stimulation modes for stimulating the identified one or more lateral spinal neural targets. The electrostimulator can apply electrostimulation energy to the identified one or more lateral spinal neural targets via the at least one lead in accordance with the user selection from the selectable stimulation modes.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 4, 2022
    Inventors: Jessica Block, Rosana Esteller, Rafael Carbunaru
  • Publication number: 20220226655
    Abstract: An external control device and method for programming an implantable neuromodulator coupled to an electrode array implanted adjacent tissue of a patient having a medical condition. Electrical modulation energy is conveyed to tissue of the patient in accordance with a series of modulation parameter sets. The patient perceives paresthesia in response to the conveyance of the electrical modulation energy to the tissue in accordance with at least one of the modulation parameter sets. One of the modulation parameter set(s) is identified based on the perceived paresthesia. Another modulation parameter set is derived from the identified modulation parameter set. Electrical modulation energy is conveyed to the tissue of the patient in accordance with the other modulation parameter set without causing the patient to perceive paresthesia. An external control device, neuromodulation system, and method of providing therapy to a patient.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 21, 2022
    Inventors: Dennis Allen Vansickle, Dongchul Lee, Sridhar Kothandaraman, Que T. Doan, Changfang Zhu, Jordi Parramon, Justin Holley, Bradley L. Hershey, Christopher E. Gillespie, Rafael Carbunaru, Nazim Wahab
  • Patent number: 11376435
    Abstract: A method of treating an ailment suffered by a patient using one or more electrodes adjacent spinal column tissue of the patient, comprises delivering electrical modulation energy from the one or more electrodes to the spinal column tissue in accordance with a continuous bi-phasic waveform having a positive phase and a negative phase, thereby modulating the spinal column tissue to treat the ailment. An implantable electrical modulation system, comprises one or more electrical terminals configured for being coupled to one or more modulation leads, output modulation circuitry capable of outputting electrical modulation energy to the electrical terminal(s) in accordance with a continuous bi-phasic waveform, and control circuitry configured for modifying a shape of the continuous bi-phasic waveform, thereby changing the characteristics of the electrical modulation energy outputted to the electrode(s).
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: July 5, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kerry Bradley, Rafael Carbunaru, Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie
  • Patent number: 11311726
    Abstract: An external control device, neuromodulation system, and method of providing therapy to a patient using an implantable neuromodulator implanted within the patient. Electrical modulation energy is delivered from the neuromodulator to the patient in accordance with the pre-existing modulation program when in one of the super-threshold delivery mode and the sub-threshold delivery mode. Operation of the neuromodulator is switched to the other of the super-threshold delivery mode and the sub-threshold delivery mode. A new modulation program may be derived from a pre-existing modulation program, and the neuromodulator may deliver the electrical modulation energy to the patient in accordance with the pre-existing modulation program during the other of the super-threshold delivery mode and the sub-threshold delivery mode.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: April 26, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis Allen Vansickle, Dongchul Lee, Sridhar Kothandaraman, Que T. Doan, Changfang Zhu, Jordi Parramon, Justin Holley, Bradley L. Hershey, Christopher E. Gillespie, Rafael Carbunaru, Nazim Wahab
  • Patent number: 11202910
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can adjust the charging current (Ibat) provided to the rechargeable battery over time (e.g., the life of the IMD) in accordance with one or more of the parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, estimates a change in the capacity of the battery, and adjust the charging current in one or both of trickle and active charging paths to slow the loss of battery capacity and extend the life of the IMD.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: December 21, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 11179568
    Abstract: Systems of techniques for controlling charge flow during the electrical stimulation of tissue. In one aspect, a method includes receiving a charge setting describing an amount of charge that is to flow during a stimulation pulse that electrically stimulates a tissue, and generating and delivering the stimulation pulse in a manner such that an amount of charge delivered to the tissue during the stimulation pulse accords with the charge setting.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 23, 2021
    Assignee: Boston Scientific Neuromodufation Corporation
    Inventors: Rafael Carbunaru, Kelly H. McClure, Jordi Parramon
  • Publication number: 20210220651
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 22, 2021
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Publication number: 20210138250
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Patent number: 10994143
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Patent number: 10926092
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: February 23, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Publication number: 20210046316
    Abstract: An example of a neurostimulation system may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to program a stimulation device for delivering the neurostimulation according to a stimulation program specifying a present stimulation field set including stimulation field(s) each defined by a set of active electrodes selected from a plurality of electrodes. The stimulation control circuit may be configured to determine the stimulation program and may include field programming circuitry that may be configured to set the present stimulation field set to an initial stimulation field set specifying stimulation fields allowing for the delivery of the neurostimulation to produce an intended effect and to identify an optimal stimulation field set that satisfies one or more optimization criteria by removing stimulation field(s) from the initial stimulation field set.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Patent number: 10806930
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can quantitatively forecast and determine the timing of an early replacement indicator (tEOLi) and an IMD End of Life (tEOL). These forecasts and determinations of tEOLi and tEOL occur in accordance with one or more parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, determines and forecasts tEOLi and tEOL. Such forecasted or determined values may also be used by a shutdown algorithm to suspend therapeutic operation of the IMD.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon