Patents by Inventor Rafael Carbunaru

Rafael Carbunaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11311726
    Abstract: An external control device, neuromodulation system, and method of providing therapy to a patient using an implantable neuromodulator implanted within the patient. Electrical modulation energy is delivered from the neuromodulator to the patient in accordance with the pre-existing modulation program when in one of the super-threshold delivery mode and the sub-threshold delivery mode. Operation of the neuromodulator is switched to the other of the super-threshold delivery mode and the sub-threshold delivery mode. A new modulation program may be derived from a pre-existing modulation program, and the neuromodulator may deliver the electrical modulation energy to the patient in accordance with the pre-existing modulation program during the other of the super-threshold delivery mode and the sub-threshold delivery mode.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: April 26, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis Allen Vansickle, Dongchul Lee, Sridhar Kothandaraman, Que T. Doan, Changfang Zhu, Jordi Parramon, Justin Holley, Bradley L. Hershey, Christopher E. Gillespie, Rafael Carbunaru, Nazim Wahab
  • Patent number: 11202910
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can adjust the charging current (Ibat) provided to the rechargeable battery over time (e.g., the life of the IMD) in accordance with one or more of the parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, estimates a change in the capacity of the battery, and adjust the charging current in one or both of trickle and active charging paths to slow the loss of battery capacity and extend the life of the IMD.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: December 21, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 11179568
    Abstract: Systems of techniques for controlling charge flow during the electrical stimulation of tissue. In one aspect, a method includes receiving a charge setting describing an amount of charge that is to flow during a stimulation pulse that electrically stimulates a tissue, and generating and delivering the stimulation pulse in a manner such that an amount of charge delivered to the tissue during the stimulation pulse accords with the charge setting.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 23, 2021
    Assignee: Boston Scientific Neuromodufation Corporation
    Inventors: Rafael Carbunaru, Kelly H. McClure, Jordi Parramon
  • Publication number: 20210220651
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 22, 2021
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Publication number: 20210138250
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Patent number: 10994143
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Patent number: 10926092
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: February 23, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Publication number: 20210046316
    Abstract: An example of a neurostimulation system may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to program a stimulation device for delivering the neurostimulation according to a stimulation program specifying a present stimulation field set including stimulation field(s) each defined by a set of active electrodes selected from a plurality of electrodes. The stimulation control circuit may be configured to determine the stimulation program and may include field programming circuitry that may be configured to set the present stimulation field set to an initial stimulation field set specifying stimulation fields allowing for the delivery of the neurostimulation to produce an intended effect and to identify an optimal stimulation field set that satisfies one or more optimization criteria by removing stimulation field(s) from the initial stimulation field set.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Patent number: 10806930
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can quantitatively forecast and determine the timing of an early replacement indicator (tEOLi) and an IMD End of Life (tEOL). These forecasts and determinations of tEOLi and tEOL occur in accordance with one or more parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, determines and forecasts tEOLi and tEOL. Such forecasted or determined values may also be used by a shutdown algorithm to suspend therapeutic operation of the IMD.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 10786677
    Abstract: Multi-phasic fields are produced at a neuromodulation site using electrodes. A first phase is directed at a target region such that a first-polarity electrical charge is injected to the target region, and a second phase is directed at portions of the neuromodulation site other than the target region, such that a second-polarity electrical charge opposite the first-polarity electrical charge is injected to those portions of the neuromodulation site to essentially neutralize the first-polarity charge injected at the neuromodulation site while maintaining at least a portion of the first-polarity charge at the target region. In some embodiments, each anode used to produce the first phase is used as a cathode to produce the second phase, and each cathode used to produce the first phase is used as an anode to produce the second phase, and the quantity of charge injected by each electrode in both phases is essentially zero.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: September 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Tianhe Zhang, Rafael Carbunaru
  • Publication number: 20200155019
    Abstract: New lead designs particularly useful in a Spinal Cord Stimulation (SCS) system are disclosed which are useful to sensing neural responses such as Evoked Compound Action Potentials (ECAPs). One or more sensing electrodes on the lead are spaced at significantly larger distances away from the stimulating electrodes, such as at distances in a range of 20 mm to less than 30 mm. Positioning the sensing electrodes at such distances allows for sensing of ECAPs at a sufficient distance away from the stimulating electrodes that ECAP measurements at the sensing electrodes will be less affected by stimulation artifacts that accompany the stimulation. The sensing electrodes may be dedicated to sensing, or may also have the ability to function as stimulating electrodes.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 21, 2020
    Inventors: Rosana Esteller, Rafael Carbunaru, Adam Featherstone
  • Publication number: 20200061380
    Abstract: Disclosed are systems and methods for providing stimulation using waveforms with long duration phases in a spinal cord stimulator. Simulation shows the effectiveness of using phase durations of greater than 2.0 ms, or even 2.6 ms or greater, in recruiting inhibitory interneurons in the dorsal horn of the spinal cord, or in recruiting dorsal column axons of the dorsal column, both of which promote pain suppression in spinal cord stimulation (SCS) patients. Traditional SCS devices may not allow the programming of phase durations of such lengths, and so examples of how long phase durations can be effectively created is shown by way of a non-limiting example, preferably in a single timing channel. The waveforms preferably have at least two phases of opposite polarities, at least one of which is long, although phases may be split into sub-phases. The waveforms may be charge balanced at each electrode.
    Type: Application
    Filed: August 9, 2019
    Publication date: February 27, 2020
    Inventors: Tianhe Zhang, Rosana Esteller, Michael A. Moffitt, Rafael Carbunaru
  • Patent number: 10537740
    Abstract: A method and external control device for providing therapy to a patient using first and second electrodes implanted within the patient is provided. A train of electrical multi-phasic pulses is generated. A first electrical current is sourced from the second electrode and at least a portion of the first electrical current is sunk to the first electrode during a stimulation phase of each multi-phasic pulse, thereby therapeutically stimulating a first tissue region adjacent the first electrode. A second electrical current is sourced from the first electrode and at least a portion of the second electrical current is sunk to the second electrode during a charge recovery phase of each multi-phasic pulse, thereby recovering at least a portion of the charge that had been injected into the patient during the stimulation phase of each multi-phasic pulse, and therapeutically stimulating a second tissue region adjacent the second electrode.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: January 21, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Kerry Bradley
  • Publication number: 20190344079
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can adjust the charging current (Ibat) provided to the rechargeable battery over time (e.g., the life of the IMD) in accordance with one or more of the parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, estimates a change in the capacity of the battery, and adjust the charging current in one or both of trickle and active charging paths to slow the loss of battery capacity and extend the life of the IMD.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 14, 2019
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Publication number: 20190344083
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Application
    Filed: April 24, 2019
    Publication date: November 14, 2019
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Publication number: 20190290906
    Abstract: A method of treating an ailment suffered by a patient using one or more electrodes adjacent spinal column tissue of the patient, comprises delivering electrical modulation energy from the one or more electrodes to the spinal column tissue in accordance with a continuous bi-phasic waveform having a positive phase and a negative phase, thereby modulating the spinal column tissue to treat the ailment. An implantable electrical modulation system, comprises one or more electrical terminals configured for being coupled to one or more modulation leads, output modulation circuitry capable of outputting electrical modulation energy to the electrical terminal(s) in accordance with a continuous bi-phasic waveform, and control circuitry configured for modifying a shape of the continuous bi-phasic waveform, thereby changing the characteristics of the electrical modulation energy outputted to the electrode(s).
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Kerry Bradley, Rafael Carbunaru, Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie
  • Patent number: 10391301
    Abstract: Architectures for implantable stimulators having N electrodes are disclosed. The architectures contains X current sources, or DACs. In a single anode/multiple cathode design, one of the electrodes is designated as the anode, and up to X of the electrodes can be designated as cathodes and independently controlled by one of the X DACs, allowing complex patient therapy and current steering between electrodes. The design uses at least X decoupling capacitors: X capacitors in the X cathode paths, or one in the anode path and X?1 in the X cathode paths. In a multiple anode/multiple cathode design having X DACs, a total of X?1 decoupling capacitors are needed. Because the number of DACs X can typically be much less than the total number of electrodes (N), these architectures minimize the number of decoupling capacitors which saves space, and ensures no DC current injection even during current steering.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 27, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Rafael Carbunaru
  • Patent number: 10350420
    Abstract: Improved external chargers for charging an implantable medical device, and particularly useful in charging a plurality of such devices, are disclosed. Each of the various embodiments include a plurality of field customization coils for customizing the magnetic charging field generated by the external charger such that the magnetic charging field is not radially symmetric. For example, one embodiment includes a primary coil with a plurality of field customization coils distributed radially with respect to the coil. The generated magnetic charging field can be rendered radially asymmetric by selectively activating or disabling the field customization coils in response to data quantifying the coupling between the various implants and the field customization coils in the charger.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: July 16, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Andrew DiGiore, Todd Whitehurst
  • Patent number: 10350413
    Abstract: A computer implemented system and method generates a patient-specific model of patient response to stimulation on a neural element basis, receives user-input of target neuromodulation sites, and, based on the patient-specific model, determines which stimulation paradigm and settings, including stimulation sites, would result in the target neuromodulation, where the stimulation sites are not necessarily the same as the resulting neuromodulation sites. The system outputs a visual representation of the stimulation sites that would result in the target neuromodulation. The system monitors a system state and/or patient state and dynamically changes which stimulation program to implement based on the state.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: July 16, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Publication number: 20190209844
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Application
    Filed: January 2, 2019
    Publication date: July 11, 2019
    Inventors: Rosana Esteller, Rafael Carbunaru