Patents by Inventor Rafael V. Davalos

Rafael V. Davalos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250120762
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Application
    Filed: October 29, 2024
    Publication date: April 17, 2025
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Patent number: 12232792
    Abstract: The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
    Type: Grant
    Filed: November 6, 2023
    Date of Patent: February 25, 2025
    Assignees: Virginia Tech Intellectual Properties, Inc., AngioDynamics, Inc.
    Inventors: Robert E. Neal, Paulo A. Garcia, Rafael V. Davalos, Peter Callas
  • Patent number: 12214189
    Abstract: Electroporation-based therapies (EBTs) employ high voltage pulsed electric fields (PEFs) to permeabilize tumor tissue, resulting in changes in passive electrical properties detectable using electrical impedance spectroscopy (EIS). Currently, commercial potentiostats for EIS are limited by impedance spectrum acquisition time (˜10 s); this timeframe is much larger than pulse periods used with EBTs (˜1 s). Fourier Analysis SpecTroscopy (FAST) is introduced as a methodology for monitoring tissue inter-burst impedance (diagnostic FAST) and intra-burst impedance (therapeutic FAST) during EBTs. FAST is a rapid-capture (<<1 s) technique which enables monitoring of inter-burst and intra-burst impedance during EBTs in real-time. FAST identified a frequency which delineates thermal effects from electroporation effects in measured impedance. Significance: FAST demonstrates the potential to perform EIS, in addition to intra-burst impedance spectroscopy, using existing pulse generator topologies.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 4, 2025
    Assignees: Virginia Tech Intellectual Properties, Inc., Angio Dynamics, Inc.
    Inventors: Melvin F. Lorenzo, Christopher B. Arena, Suyashree Bhonsle, Natalie White, Lucy Epshteyn, Rafael V. Davalos
  • Publication number: 20250000569
    Abstract: The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. Included is a method of treating tissue with electrical energy, the method comprising: delivering electrical energy to tissue using one or more electroporation devices comprising one or more electrodes; and cooling the tissue, surrounding tissue, one or more of the electrodes, or one or more of the electroporation devices to minimize heating. In embodiments, the invention can be used to treat solid tumors, such as brain tumors, and in some embodiments, exemplary methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
    Type: Application
    Filed: July 9, 2024
    Publication date: January 2, 2025
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John L. Robertson, John H. Rossmeisl, Robert E. Neal, II
  • Patent number: 12173280
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: December 24, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Publication number: 20240299076
    Abstract: Methods and systems for distributing electrical energy to tissue which minimize Joule heating, thermal effects, and/or thermal damage, without sacrificing efficacy of treatment, are described. The methods and systems are particularly suitable to electrical energy-based therapies employing multiple electrodes, such as arrays of electrodes.
    Type: Application
    Filed: March 19, 2024
    Publication date: September 12, 2024
    Inventors: Timothy J. O'Brien, Robert E. Neal, II, Rafael V. Davalos
  • Patent number: 12083339
    Abstract: Described herein are methods of electroporation that can include the steps of contacting a cell that is responsive to an EphA2 receptor ligand with an amount of an EphA2 receptor ligand and applying high-frequency irreversible electroporation to the cell. Also described herein are methods of treating cancer in a subject in need thereof, wherein the methods can include the steps of administering an amount of an EphA2 receptor ligand and applying high-frequency irreversible electroporation to a location on or within the subject.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 10, 2024
    Assignees: Virginia Tech Intellectual Properties, Inc., Wake Forest University Health Sciences
    Inventors: Jill W. Ivey, Eduardo L. Latouche, Scott S. Verbridge, Rafael V. Davalos, Glenn J. Lesser, Waldemar Debinski
  • Publication number: 20240277245
    Abstract: Provided herein are devices, systems, and methods for monitoring lesion or treated area in a tissue during focal ablation or cell membrane disruption therapy.
    Type: Application
    Filed: January 4, 2024
    Publication date: August 22, 2024
    Inventors: Rafael V. Davalos, Mohammad Bonakdar, Eduardo L. Latouche, Roop L. Mahajan, John L. Robertson, Christopher B. Arena, Michael B. Sano
  • Publication number: 20240268878
    Abstract: Described herein are methods and systems of performing immunotherapy on a subject and/or determining if a subject will be responsive to ablation immunotherapy.
    Type: Application
    Filed: January 2, 2024
    Publication date: August 15, 2024
    Inventors: Rafael V. Davalos, Natalie White
  • Patent number: 12059197
    Abstract: The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. Included is a method of treating tissue with electrical energy, the method comprising: delivering electrical energy to tissue using one or more electroporation devices comprising one or more electrodes; and cooling the tissue, surrounding tissue, one or more of the electrodes, or one or more of the electroporation devices to minimize heating. In embodiments, the invention can be used to treat solid tumors, such as brain tumors, and in some embodiments, exemplary methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: August 13, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John L. Robertson, John H. Rossmeisl, Robert E. Neal, II
  • Publication number: 20240173063
    Abstract: A medical system for ablating a tissue site with real-time monitoring during an electroporation treatment procedure. A pulse generator generates a pre-treatment (PT) test signal prior to the treatment procedure and intra-treatment (IT) test signals during the treatment procedure. A treatment control module determines impedance values from the PT test signal and IT test signals and determines a progress of electroporation and an end point of treatment in real-time based on the determined impedance values while the treatment progresses.
    Type: Application
    Filed: December 4, 2023
    Publication date: May 30, 2024
    Inventors: Robert Neal, II, Rafael V. Davalos
  • Patent number: 11974800
    Abstract: The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 7, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Michael B. Sano, Rafael V. Davalos, John L Robertson, Paulo A. Garcia, Robert E. Neal
  • Patent number: 11952568
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: April 9, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Patent number: 11950835
    Abstract: Methods and systems for distributing electrical energy to tissue which minimize Joule heating, thermal effects, and/or thermal damage, without sacrificing efficacy of treatment, are described. The methods and systems are particularly suitable to electrical energy-based therapies employing multiple electrodes, such as arrays of electrodes.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: April 9, 2024
    Assignees: Virginia Tech Intellectual Properties, Inc., AngioDynamics, Inc.
    Inventors: Timothy J. O'Brien, Robert E. Neal, II, Rafael V. Davalos
  • Patent number: 11925405
    Abstract: Described herein are methods and systems of performing immunotherapy on a subject and/or determining if a subject will be responsive to ablation immunotherapy.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 12, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Natalie White
  • Publication number: 20240074804
    Abstract: The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Inventors: Robert E. Neal, Paulo A. Garcia, Rafael V. Davalos, Peter Callas
  • Patent number: 11903690
    Abstract: Provided herein are devices, systems, and methods for monitoring lesion or treated area in a tissue during focal ablation or cell membrane disruption therapy.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: February 20, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Mohammad Bonakdar, Eduardo L. Latouche, Roop L. Mahajan, John L. Robertson, Christopher B. Arena, Michael B. Sano
  • Patent number: 11890046
    Abstract: A medical system for ablating a tissue site with real-time monitoring during an electroporation treatment procedure. A pulse generator generates a pre-treatment (PT) test signal prior to the treatment procedure and intra-treatment (IT) test signals during the treatment procedure. A treatment control module determines impedance values from the PT test signal and IT test signals and determines a progress of electroporation and an end point of treatment in real-time based on the determined impedance values while the treatment progresses.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: February 6, 2024
    Assignees: Virginia Tech Intellectual Properties, Inc., AngioDynamics, Inc.
    Inventors: Robert Neal, II, Rafael V. Davalos
  • Publication number: 20240008911
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 11, 2024
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Publication number: 20230355293
    Abstract: A method for treating a target tissue in a patient in need thereof is provided. The method includes the steps of identifying one or more characteristics of one or more cells of a target tissue; calculating a threshold electric field for inducing IRE in the target tissue based on the one or more characteristics; constructing a treatment protocol of one or more pulse parameters, wherein the treatment protocol is capable of inducing IRE in the target tissue; and delivering the treatment protocol to the target tissue. Systems for treatment planning for medical therapies involving administering electrical treatment energy are also provided.
    Type: Application
    Filed: April 3, 2023
    Publication date: November 9, 2023
    Inventors: Rafael V. Davalos, Christopher B. Arena