Patents by Inventor Rafael V. Davalos

Rafael V. Davalos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10286108
    Abstract: The present invention provides engineered tissue scaffolds, engineered tissues, and methods of using them. The scaffolds and tissues are derived from natural tissues and are created using non-thermal irreversible electroporation (IRE). Use of IRE allows for ablation of cells of the tissue to be treated, but allows vascular and neural structures to remain essentially unharmed. Use of IRE thus permits preparation of thick tissue scaffolds and tissues due to the presence of vasculature within the scaffolds. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: May 14, 2019
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventor: Rafael V. Davalos
  • Publication number: 20190137446
    Abstract: Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
    Type: Application
    Filed: August 8, 2018
    Publication date: May 9, 2019
    Inventors: Rafael V. Davalos, Hadi Shafiee, Michael Benjamin Sano, John L. Caldwell
  • Publication number: 20190133671
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Application
    Filed: December 26, 2018
    Publication date: May 9, 2019
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Patent number: 10272178
    Abstract: The present invention provides engineered tissue scaffolds, engineered tissues, and methods of using them. The scaffolds and tissues are derived from natural tissues and are created using non-thermal irreversible electroporation (IRE). Use of IRE allows for ablation of cells of the tissue to be treated, but allows vascular and neural structures to remain essentially unharmed. Use of IRE thus permits preparation of thick tissue scaffolds and tissues due to the presence of vasculature within the scaffolds. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: April 30, 2019
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John H. Rossmeisl
  • Patent number: 10245105
    Abstract: The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. Included is a method of treating tissue with electrical energy, the method comprising: delivering electrical energy to tissue using one or more electroporation devices comprising one or more electrodes; and cooling the tissue, surrounding tissue, one or more of the electrodes, or one or more of the electroporation devices to minimize heating. In embodiments, the invention can be used to treat solid tumors, such as brain tumors, and in some embodiments, exemplary methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: April 2, 2019
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John L. Robertson, John H. Rossmeisl, Robert E. Neal, II
  • Patent number: 10245098
    Abstract: A method is provided for ablating brain tissue of a living mammal comprising: placing first and second electrodes in a brain of the living mammal; applying a plurality of electrical pulses through the first and second placed electrodes which are predetermined to: cause irreversible electroporation (IRE) of brain tissue of the mammal within a target ablation zone; and cause a temporary disruption of a blood brain barrier (BBB) within a surrounding zone that surrounds the target ablation zone to allow material in a blood vessel to be transferred to the surrounding zone through the temporarily disrupted BBB. Such methods are useful for delivering large molecule material within a blood vessel of the brain across the BBB, where the large molecule is otherwise blocked by the BBB from passing through the blood vessel into the brain.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: April 2, 2019
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Patent number: 10238447
    Abstract: A medical system for ablating a tissue site with real-time monitoring during an electroporation treatment procedure. A pulse generator generates a pre-treatment (PT) test signal having a frequency of at least 1 MHz prior to the treatment procedure and intra-treatment (IT) test signals during the treatment procedure. A treatment control module determines impedance values from the PT test signal and IT test signals and determines a progress of electroporation and an end point of treatment in real-time based on the determined impedance values while the treatment progresses.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: March 26, 2019
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Robert Neal, II, Rafael V Davalos
  • Publication number: 20190069945
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Publication number: 20190029749
    Abstract: Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.
    Type: Application
    Filed: October 5, 2018
    Publication date: January 31, 2019
    Inventors: Paulo A. Garcia, Christopher B. Arena, Michael B. Sano, Rafael V. Davalos
  • Patent number: 10154874
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: December 18, 2018
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Patent number: 10117707
    Abstract: Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: November 6, 2018
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Paulo A. Garcia, Christopher B. Arena, Michael B. Sano, Rafael V. Davalos
  • Patent number: 10078066
    Abstract: Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: September 18, 2018
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Hadi Shafiee, Michael Benjamin Sano, John L. Caldwell
  • Publication number: 20180161086
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Application
    Filed: January 26, 2018
    Publication date: June 14, 2018
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Publication number: 20180125565
    Abstract: The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Application
    Filed: December 15, 2017
    Publication date: May 10, 2018
    Inventors: Michael B. Sano, Rafael V. Davalos, John L. Robertson, Paulo A. Garcia, Robert E. Neal
  • Patent number: 9867652
    Abstract: The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 16, 2018
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Michael B. Sano, Rafael V. Davalos, John L. Robertson, Paulo A. Garcia, Robert E. Neal, II
  • Publication number: 20170360326
    Abstract: Provided herein are devices, systems, and methods for monitoring lesion or treated area in a tissue during focal ablation or cell membrane disruption therapy. Provided herein are embodiments of an electrical conductivity sensor having an impedance sensor, where the impedance sensor can be configured to measure a low-frequency and a high-frequency impedance and a substrate, where the impedance sensor is coupled to the substrate. The substrate can be flexible. In embodiments, the impedance sensor can contain two or more electrical conductors. The electrical conductors can be in a bipolar configuration. The electrical conductors can be in a tetrapolar configuration. In embodiments, the electrical conductivity sensor can have two impedance sensors that can be coupled to the substrate such that they are orthogonal to each other.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 21, 2017
    Inventors: RAFAEL V. DAVALOS, MOHAMMAD BONAKDAR, EDUARDO L. LATOUCHE, ROOP L. MAHAJAN, JOHN L. ROBERTSON, CHRISTOPHER B. ARENA, MICHAEL B. SANO
  • Publication number: 20170209620
    Abstract: The present invention provides engineered tissue scaffolds, engineered tissues, and methods of using them. The scaffolds and tissues are derived from natural tissues and are created using non-thermal irreversible electroporation (IRE). Use of IRE allows for ablation of cells of the tissue to be treated, but allows vascular and neural structures to remain essentially unharmed. Use of IRE thus permits preparation of thick tissue scaffolds and tissues due to the presence of vasculature within the scaffolds. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Application
    Filed: February 3, 2017
    Publication date: July 27, 2017
    Inventor: Rafael V. Davalos
  • Publication number: 20170189579
    Abstract: The present invention provides engineered tissue scaffolds, engineered tissues, and methods of using them. The scaffolds and tissues are derived from natural tissues and are created using non-thermal irreversible electroporation (IRE). Use of IRE allows for ablation of cells of the tissue to be treated, but allows vascular and neural structures to remain essentially unharmed. Use of IRE thus permits preparation of thick tissue scaffolds and tissues due to the presence of vasculature within the scaffolds. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Application
    Filed: February 3, 2017
    Publication date: July 6, 2017
    Inventor: Rafael V. Davalos
  • Patent number: 9598691
    Abstract: The present invention provides engineered tissue scaffolds, engineered tissues, and methods of using them. The scaffolds and tissues are derived from natural tissues and are created using non-thermal irreversible electroporation (IRE). Use of IRE allows for ablation of cells of the tissue to be treated, but allows vascular and neural structures to remain essentially unharmed. Use of IRE thus permits preparation of thick tissue scaffolds and tissues due to the presence of vasculature within the scaffolds. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: March 21, 2017
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Rafael V. Davalos
  • Publication number: 20160361109
    Abstract: The invention encompasses a method of inducing a high permeability state in a cell membrane and a method for ablating a target tissue wherein the method comprises applying an electroporation pulse to a cell, wherein at a time after the electroporation pulse is applied, a plurality of long lived pores (LLPs) are formed in the cell membrane and the presence of the LLPs causes a change in the cell osmotic pressure difference. The invention also encompasses a method for ablating a target tissue using an electrical pulse regime that induces cell permeabilization and cell death, wherein the primary mechanism of cell death is as a result of electroporation.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 15, 2016
    Inventors: James C. Weaver, Reuben S. Son, Thiruvallur R. Gowrishankar, Daniel C. Sweeney, Rafael V. Davalos