Patents by Inventor Raghuveer Basude

Raghuveer Basude has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200383782
    Abstract: A clip for immobilizing leaflets of a cardiac or venous valve includes a hub having a pair of tangle resistant spring-biased outer arms coupled to an inferior end of the hub and a pair of tangle resistant spring-biased inner arms adjacent to the outer arms and coupled to a superior end of the hub. A delivery catheter may be used to position the valve clip adjacent a target valve while the outer and inner arms are biased in an opened position relative to each other. After the valve leaflets are located between the opened outer and inner arms, the biasing forces may be released to allow the clip to self-close the clip over the valve leaflets.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 10, 2020
    Applicant: MEDFREE, INC.
    Inventors: Raghuveer Basude, Shri Krishna Basude
  • Patent number: 10779980
    Abstract: A intragastric device that contains a compressible free-floating structure and a sleeve attached thereto is provided. The device is considered to be anchorless as the sleeve is not physically attached to any portion of the GI tract. The device is configurable between a compressed pre-deployment configuration and an expanded post-deployment configuration. The free-floating device may be composed of a shape memory material such a nitinol. In some embodiments, the free-floating structure is space occupying and non-porous. The sleeve may be attached to the free-floating structure, such as with sutures and/or glue. In some embodiments, a stent may be inserted at the proximal end of the sleeve. A second free-floating structure may be connected to the free-floating structure such that there is an upper structure and a lower structure. In some embodiments, the gastrointestinal device is used to deliver prebiotic and/or probiotic therapy to a patient.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: September 22, 2020
    Assignee: SynerZ Medical, Inc.
    Inventors: Virender K. Sharma, Raghuveer Basude
  • Publication number: 20200281591
    Abstract: A tissue gripping device is formed from a shape-memory material, and has a base section, a first arm, and a second arm disposed opposite the first arm, each arm having a first end coupled to the base section and a free end extending from the base section. The arms of the tissue gripping device are configured to resiliently flex toward a relaxed configuration in a distal direction as the tissue gripping device is moved from a pre-deployed configuration toward a deployed configuration. The tissue gripping device is usable in a method for gripping tissue. The method includes positioning the tissue gripping device near target tissue and moving the tissue gripping device from a pre-deployed configuration toward a deployed configuration in order to grip the target tissue.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Applicant: EVALVE, INC.
    Inventors: Ryan T. Krone, Jacob L. Greenberg, Raghuveer Basude
  • Publication number: 20200245998
    Abstract: Procedures may be performed on the heart after the installation of a mitral valve fixation device. In order to prepare the heart for such procedures, the fixation device may be removed or disabled in minimally invasive ways (e.g., through an endovascular procedure), without requiring open access to the heart. The fixation device may be partitioned so that one portion may remain attached to each leaflet of the mitral valve. In another example, the leaflets may be cut along the edges of the distal element(s) of the fixation device, so as to cut the fixation device from the leaflet(s). Systems and devices for performing such procedures endovascularly are disclosed. Fixation devices with improved access to a release harness are also disclosed.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 6, 2020
    Inventors: Raghuveer Basude, Kent Dell, Arundhati Kabe, Gaurav Krishnamurthy, Michael F. Wei
  • Publication number: 20200230362
    Abstract: The present disclosure relates generally to systems, devices, and methods for supporting, stabilizing, and/or positioning a medical device, such as a transcatheter medical device. The stabilizer allows for control of degrees of freedom from no movement to free movement to selective movements, to substantially translation only movement and/or to substantially rotational only movement of the medical device. The patent describes pure mechanical embodiment as well as smart embodiments that can synergistically sense, actuate and/or transmit data between the stabilizer, medical device and control or display system to operate and/or deploy the device/therapy.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 23, 2020
    Inventor: Raghuveer Basude
  • Patent number: 10667804
    Abstract: Procedures may be performed on the heart after the installation of a mitral valve fixation device. In order to prepare the heart for such procedures, the fixation device may be removed or disabled in minimally invasive ways (e.g., through an endovascular procedure), without requiring open access to the heart. The fixation device may be partitioned so that one portion may remain attached to each leaflet of the mitral valve. In another example, the leaflets may be cut along the edges of the distal element(s) of the fixation device, so as to cut the fixation device from the leaflet(s). Systems and devices for performing such procedures endovascularly are disclosed. Fixation devices with improved access to a release harness are also disclosed.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: June 2, 2020
    Assignee: Evalve, Inc.
    Inventors: Raghuveer Basude, Kent Dell, Arundhati Kabe, Gaurav Krishnamurthy, Michael F. Wei
  • Patent number: 10667815
    Abstract: A tissue gripping device is formed from a shape-memory material, and has a base section, a first arm, and a second arm disposed opposite the first arm, each arm having a first end coupled to the base section and a free end extending from the base section. The arms of the tissue gripping device are configured to resiliently flex toward a relaxed configuration in a distal direction as the tissue gripping device is moved from a pre-deployed configuration toward a deployed configuration. The tissue gripping device is usable in a method for gripping tissue. The method includes positioning the tissue gripping device near target tissue and moving the tissue gripping device from a pre-deployed configuration toward a deployed configuration in order to grip the target tissue.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: June 2, 2020
    Assignee: EVALVE, INC.
    Inventors: Ryan T. Krone, Jacob L. Greenberg, Raghuveer Basude
  • Publication number: 20200138569
    Abstract: A prosthetic device for sealing a native heart valves to prevent or reduce regurgitation comprises a spacer having one or more anchors. The spacer may also have atrial support structures, ventricular support structures, or both atrial and ventricular support structures In some cases, the spacer has anchors that attach to the leaflets as well as atrial and ventricular support. In some cases, the spacer straddles the annulus and is located by anchors, and in some cases the support structures can be implanted within the native heart valve. In some cases, the prosthetic device reduces the annulus diameter when implanted within the native heart vasculature. In some cases, the prosthetic device cinches the annulus when implanted within the native heart vasculature.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Raghuveer Basude, Shri Krishna Basude
  • Publication number: 20200015990
    Abstract: A gastrointestinal device for treating obesity includes a three-dimensional porous structure configurable between a compressed pre-deployment configuration to facilitate delivery and an expanded post-deployment configuration. The porous structure includes a first opening at its proximal end and a larger second opening at its distal end. The porous structure also includes a sleeve coupled to its distal end. Optionally, the device further includes a suture at the proximal end of the wire mesh structure to facilitate retrieval and an anti-migration component positioned at the junction of the porous structure with the sleeve. The porous structure is deployed in a patient's stomach such that the anti-migration component sits proximal to the patient's pylorus and prevents migration of the entirety of the device into and through the pylorus. The sleeve extends through the pylorus, into the duodenum and ends in the duodenum or jejunum.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 16, 2020
    Inventors: Virender K. Sharma, Raghuveer Basude
  • Patent number: 10420665
    Abstract: A gastrointestinal device for treating obesity includes a three-dimensional porous structure configurable between a compressed pre-deployment configuration to facilitate delivery and an expanded post-deployment configuration. The porous structure includes a first opening at its proximal end and a larger second opening at its distal end. The porous structure also includes a sleeve coupled to its distal end. Optionally, the device further includes a suture at the proximal end of the wire mesh structure to facilitate retrieval and an anti-migration component positioned at the junction of the porous structure with the sleeve. The porous structure is deployed in a patient's stomach such that the anti-migration component sits proximal to the patient's pylorus and prevents migration of the entirety of the device into and through the pylorus. The sleeve extends through the pylorus, into the duodenum and ends in the duodenum or jejunum.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: September 24, 2019
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Virender K. Sharma, Raghuveer Basude
  • Publication number: 20190142589
    Abstract: A clip for immobilizing leaflets of a cardiac or venous valve includes a hub having a pair of tangle resistant spring-biased outer arms coupled to an inferior end of the hub and a pair of tangle resistant spring-biased inner arms adjacent to the outer arms and coupled to a superior end of the hub. A delivery catheter may be used to position the valve clip adjacent a target valve while the outer and inner arms are biased in an opened position relative to each other. After the valve leaflets are located between the opened outer and inner arms, the biasing forces may be released to allow the clip to self-close the clip over the valve leaflets.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventor: Raghuveer Basude
  • Publication number: 20190053803
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: August 16, 2018
    Publication date: February 21, 2019
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Theodore W. Ketai, Jacob Greenberg, Daniel Hale, Tanmay Mishra, Gabriel Gonzales, Raghuveer Basude, Michael Hong
  • Publication number: 20180263803
    Abstract: An intragastric device including (1) a first wire mesh structure having a pre-deployment shape, a post-deployment shape greater than the pre-deployment state, and one or more openings on an upper portion of the first wire mesh structure that are configured to permit food to enter the device, (2) a second wire mesh structure having a pre-deployment shape a post-deployment shape greater than the pre-deployment state, and one or more openings on a lower portion of the second wire mesh structure that are configured to permit food to exit the device. A sleeve may be coupled to the lower portion of the wire mesh structure. An anti-migration collar may interconnect the wire mesh structure and the sleeve. In use, food enters the upper portion of the first wire mesh structure, passes through both wire mesh structures, and then exits the lower portion of the second wire mesh structure.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 20, 2018
    Inventors: Virender K. Sharma, Raghuveer Basude
  • Patent number: 10010439
    Abstract: An intragastric device including (1) a first wire mesh structure having a pre-deployment shape, a post-deployment shape greater than the pre-deployment state, and one or more openings on an upper portion of the first wire mesh structure that are configured to permit food to enter the device, (2) a second wire mesh structure having a pre-deployment shape a post-deployment shape greater than the pre-deployment state, and one or more openings on a lower portion of the second wire mesh structure that are configured to permit food to exit the device. A sleeve may be coupled to the lower portion of the wire mesh structure. An anti-migration collar may interconnect the wire mesh structure and the sleeve. In use, food enters the upper portion of the first wire mesh structure, passes through both wire mesh structures, and then exits the lower portion of the second wire mesh structure.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: July 3, 2018
    Assignee: SynerZ Medical, Inc.
    Inventors: Virender K. Sharma, Raghuveer Basude
  • Publication number: 20170312111
    Abstract: A intragastric device that contains a compressible free-floating structure and a sleeve attached thereto is provided. The device is considered to be anchorless as the sleeve is not physically attached to any portion of the GI tract. The device is configurable between a compressed pre-deployment configuration and an expanded post-deployment configuration. The free-floating device may be composed of a shape memory material such a nitinol. In some embodiments, the free-floating structure is space occupying and non-porous. The sleeve may be attached to the free-floating structure, such as with sutures and/or glue. In some embodiments, a stent may be inserted at the proximal end of the sleeve. A second free-floating structure may be connected to the free-floating structure such that there is an upper structure and a lower structure. In some embodiments, the gastrointestinal device is used to deliver prebiotic and/or probiotic therapy to a patient.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 2, 2017
    Inventors: Virender K. Sharma, Raghuveer Basude
  • Publication number: 20170266027
    Abstract: An intragastric device including (1) a first wire mesh structure having a pre-deployment shape, a post-deployment shape greater than the pre-deployment state, and one or more openings on an upper portion of the first wire mesh structure that are configured to permit food to enter the device, (2) a second wire mesh structure having a pre-deployment shape a post-deployment shape greater than the pre-deployment state, and one or more openings on a lower portion of the second wire mesh structure that are configured to permit food to exit the device. A sleeve may be coupled to the lower portion of the wire mesh structure. An anti-migration collar may interconnect the wire mesh structure and the sleeve. In use, food enters the upper portion of the first wire mesh structure, passes through both wire mesh structures, and then exits the lower portion of the second wire mesh structure.
    Type: Application
    Filed: April 20, 2016
    Publication date: September 21, 2017
    Inventors: Virender K. Sharma, Raghuveer Basude
  • Publication number: 20170143330
    Abstract: Procedures may be performed on the heart after the installation of a mitral valve fixation device. In order to prepare the heart for such procedures, the fixation device may be removed or disabled in minimally invasive ways (e.g., through an endovascular procedure), without requiring open access to the heart. The fixation device may be partitioned so that one portion may remain attached to each leaflet of the mitral valve. In another example, the leaflets may be cut along the edges of the distal element(s) of the fixation device, so as to cut the fixation device from the leaflet(s). Systems and devices for performing such procedures endovascularly are disclosed. Fixation devices with improved access to a release harness are also disclosed.
    Type: Application
    Filed: February 2, 2017
    Publication date: May 25, 2017
    Inventors: Raghuveer Basude, Kent Dell, Arundhati Kabe, Gaurav Krishnamurthy, Michael F. Wei
  • Patent number: 9572666
    Abstract: Procedures may be performed on the heart after the installation of a mitral valve fixation device. In order to prepare the heart for such procedures, the fixation device may be removed or disabled in minimally invasive ways (e.g., through an endovascular procedure), without requiring open access to the heart. The fixation device may be partitioned so that one portion may remain attached to each leaflet of the mitral valve. In another example, the leaflets may be cut along the edges of the distal element(s) of the fixation device, so as to cut the fixation device from the leaflet(s). Systems and devices for performing such procedures endovascularly are disclosed. Fixation devices with improved access to a release harness are also disclosed.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Evalve, Inc.
    Inventors: Raghuveer Basude, Kent Dell, Arundhati Kabe, Gaurav Krishnamurthy, Michael F. Wei
  • Publication number: 20170020521
    Abstract: A tissue gripping device is formed from a shape-memory material, and has a base section, a first arm, and a second arm disposed opposite the first arm, each arm having a first end coupled to the base section and a free end extending from the base section. The arms of the tissue gripping device are configured to resiliently flex toward a relaxed configuration in a distal direction as the tissue gripping device is moved from a pre-deployed configuration toward a deployed configuration. The tissue gripping device is usable in a method for gripping tissue. The method includes positioning the tissue gripping device near target tissue and moving the tissue gripping device from a pre-deployed configuration toward a deployed configuration in order to grip the target tissue.
    Type: Application
    Filed: July 21, 2015
    Publication date: January 26, 2017
    Inventors: Ryan T. Krone, Jacob L. Greenberg, Raghuveer Basude
  • Publication number: 20160095733
    Abstract: A gastrointestinal device for treating obesity includes a three-dimensional porous structure configurable between a compressed pre-deployment configuration to facilitate delivery and an expanded post-deployment configuration. The porous structure includes a first opening at its proximal end and a larger second opening at its distal end. The porous structure also includes a sleeve coupled to its distal end. Optionally, the device further includes a suture at the proximal end of the wire mesh structure to facilitate retrieval and an anti-migration component positioned at the junction of the porous structure with the sleeve. The porous structure is deployed in a patient's stomach such that the anti-migration component sits proximal to the patient's pylorus and prevents migration of the entirety of the device into and through the pylorus. The sleeve extends through the pylorus, into the duodenum and ends in the duodenum or jejunum.
    Type: Application
    Filed: September 23, 2015
    Publication date: April 7, 2016
    Inventors: Virender K. Sharma, Raghuveer Basude