Patents by Inventor Raghuveer R. Patlolla

Raghuveer R. Patlolla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9859218
    Abstract: Semiconductor structures including copper interconnect structures and methods include selective surface modification of copper by providing a CuxTiyNz alloy in the surface. The methods generally include forming a titanium nitride layer on an exposed copper surface followed by annealing to form the CuxTiyNz alloy in the exposed copper surface. Subsequently, the titanium layer is removed by a selective wet etching.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raghuveer R. Patlolla, Cornelius Brown Peethala, Roger A. Quon, Chih-Chao Yang
  • Patent number: 9837350
    Abstract: Embodiments are directed to a semiconductor structure having a dual-layer interconnect and a barrier layer. The interconnect structure combines a first conductive layer, a second conductive layer, and a barrier layer disposed between. The result is a low via resistance combined with improved electromigration performance. In one embodiment, the first conductive layer is copper, the second conductive layer is cobalt, and the barrier layer is tantalum nitride. A barrier layer is not used in other embodiments. Other embodiments are also disclosed.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: December 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Takeshi Nogami, Raghuveer R. Patlolla
  • Publication number: 20170317026
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Patent number: 9806023
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: October 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Publication number: 20170301624
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Application
    Filed: February 28, 2017
    Publication date: October 19, 2017
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Publication number: 20170294381
    Abstract: Embodiments are directed to a semiconductor structure having a dual-layer interconnect and a barrier layer. The interconnect structure combines a first conductive layer, a second conductive layer, and a barrier layer disposed between. The result is a low via resistance combined with improved electromigration performance. In one embodiment, the first conductive layer is copper, the second conductive layer is cobalt, and the barrier layer is tantalum nitride. A barrier layer is not used in other embodiments. Other embodiments are also disclosed.
    Type: Application
    Filed: April 12, 2016
    Publication date: October 12, 2017
    Inventors: BENJAMIN D. BRIGGS, TAKESHI NOGAMI, Raghuveer R. Patlolla
  • Publication number: 20170294382
    Abstract: Embodiments are directed to a semiconductor structure having a dual-layer interconnect and a barrier layer. The interconnect structure combines a first conductive layer, a second conductive layer, and a barrier layer disposed between. The result is a low via resistance combined with improved electromigration performance. In one embodiment, the first conductive layer is copper, the second conductive layer is cobalt, and the barrier layer is tantalum nitride. A barrier layer is not used in other embodiments. Other embodiments are also disclosed.
    Type: Application
    Filed: May 31, 2017
    Publication date: October 12, 2017
    Inventors: BENJAMIN D. BRIGGS, TAKESHI NOGAMI, RAGHUVEER R. PATLOLLA
  • Patent number: 9685406
    Abstract: A method for manufacturing a semiconductor device includes forming a dielectric layer on a substrate, forming a plurality of openings in the dielectric layer, conformally depositing a barrier layer on the dielectric layer and on sides and a bottom of each one of the plurality of openings, depositing a contact layer on the barrier layer in each one of the plurality of openings, removing a portion of each contact layer from each one of the plurality of openings, and removing a portion of the barrier layer from each one of the plurality of openings, wherein at least the removal of the portion of the barrier layer is performed using an etchant including: (a) a compound selected from group consisting of -azole, -triazole, and combinations thereof; (b) a compound containing one or more peroxy groups; (c) one or more alkaline metal hydroxides; and (d) water.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: June 20, 2017
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath, Hosadurga Shobha
  • Patent number: 9666529
    Abstract: Embodiments of the present invention provide increased distance between vias and neighboring metal lines in a back end of line (BEOL) structure. A copper alloy seed layer is deposited in trenches that are formed in a dielectric layer. The trenches are then filled with copper. An anneal is then performed to create a self-forming barrier using a seed layer constituent, such as manganese, as the manganese is drawn to the dielectric layer during the anneal. The self-forming barrier is disposed on a shoulder region of the dielectric layer, increasing the effective distance between the via and its neighboring metal lines.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 30, 2017
    Assignee: International Business Machines Corporation
    Inventors: Elbert Emin Huang, Takeshi Nogami, Raghuveer R. Patlolla, Christopher J. Penny, Theodorus Eduardus Standaert
  • Patent number: 9640514
    Abstract: A bonding material stack for wafer-to-wafer bonding is provided. The bonding material stack may include a plurality of layers each including boron and nitrogen. In one embodiment, the plurality of layers may include: a first boron oxynitride layer for adhering to a wafer; a boron nitride layer over the first boron oxynitride layer; a second boron oxynitride layer over the boron nitride layer; and a silicon-containing boron oxynitride layer over the second boron oxynitride layer.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Wei Lin, Troy L. Graves-Abe, Donald F. Canaperi, Spyridon Skordas, Matthew T. Shoudy, Binglin Miao, Raghuveer R. Patlolla, Sanjay C. Mehta
  • Patent number: 9379057
    Abstract: Embodiments of the present invention provide increased distance between vias and neighboring metal lines in a back end of line (BEOL) structure. A copper alloy seed layer is deposited in trenches that are formed in a dielectric layer. The trenches are then filled with copper. An anneal is then performed to create a self-forming barrier using a seed layer constituent, such as manganese, as the manganese is drawn to the dielectric layer during the anneal. The self-forming barrier is disposed on a shoulder region of the dielectric layer, increasing the effective distance between the via and its neighboring metal lines.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: June 28, 2016
    Assignee: International Business Machines Corporation
    Inventors: Elbert Emin Huang, Takeshi Nogami, Raghuveer R. Patlolla, Christopher J. Penny, Theodorus Eduardus Standaert
  • Publication number: 20160064330
    Abstract: Embodiments of the present invention provide increased distance between vias and neighboring metal lines in a back end of line (BEOL) structure. A copper alloy seed layer is deposited in trenches that are formed in a dielectric layer. The trenches are then filled with copper. An anneal is then performed to create a self-forming barrier using a seed layer constituent, such as manganese, as the manganese is drawn to the dielectric layer during the anneal. The self-forming barrier is disposed on a shoulder region of the dielectric layer, increasing the effective distance between the via and its neighboring metal lines.
    Type: Application
    Filed: October 15, 2015
    Publication date: March 3, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Elbert Emin Huang, Takeshi Nogami, Raghuveer R. Patlolla, Christopher J. Penny, Theodorus Eduardus Standaert
  • Publication number: 20160064321
    Abstract: Embodiments of the present invention provide increased distance between vias and neighboring metal lines in a back end of line (BEOL) structure. A copper alloy seed layer is deposited in trenches that are formed in a dielectric layer. The trenches are then filled with copper. An anneal is then performed to create a self-forming barrier using a seed layer constituent, such as manganese, as the manganese is drawn to the dielectric layer during the anneal. The self-forming barrier is disposed on a shoulder region of the dielectric layer, increasing the effective distance between the via and its neighboring metal lines.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 3, 2016
    Applicant: lntemational Business Machines Corporation
    Inventors: Elbert Emin Huang, Takeshi Nogami, Raghuveer R. Patlolla, Christopher J. Penny, Theodorus Eduardus Standaert
  • Publication number: 20150371863
    Abstract: A method utilizing a chemical mechanical polishing process to remove a patterned material stack comprising at least one pattern transfer layer and a template layer during a rework process or during a post pattern transfer cleaning process is provided. The pattern in the patterned material stack is formed by pattern transfer of a directed self-assembly pattern generated from microphase separation of a self-assembly material.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventors: Jassem A. Abdallah, Raghuveer R. Patlolla, Brown C. Peethala
  • Patent number: 9190285
    Abstract: A method utilizing a chemical mechanical polishing process to remove a patterned material stack comprising at least one pattern transfer layer and a template layer during a rework process or during a post pattern transfer cleaning process is provided. The pattern in the patterned material stack is formed by pattern transfer of a directed self-assembly pattern generated from microphase separation of a self-assembly material.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: November 17, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jassem A. Abdallah, Raghuveer R. Patlolla, Brown C. Peethala
  • Publication number: 20150325450
    Abstract: A method utilizing a chemical mechanical polishing process to remove a patterned material stack comprising at least one pattern transfer layer and a template layer during a rework process or during a post pattern transfer cleaning process is provided. The pattern in the patterned material stack is formed by pattern transfer of a directed self-assembly pattern generated from microphase separation of a self-assembly material.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: Jassem A. Abdallah, Raghuveer R. Patlolla, Brown C. Peethala