Patents by Inventor Rahul Mital

Rahul Mital has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240066468
    Abstract: Methods and systems related to an exhaust gas treatment system including, in order: (i) a first means for injecting a nitrogenous reductant; (ii) a first selective catalytic reduction (SCR) catalyst; (iii) an ammonia slip catalyst (ASC); and (iv) a second selective catalytic reduction (SCR) catalyst, wherein the ASC comprises an SCR catalyst and a supported palladium (Pd) component.
    Type: Application
    Filed: August 30, 2023
    Publication date: February 29, 2024
    Inventors: Ceren AYDIN, Patrick BANNON, Penelope MARKATOU, Dennis MURRAY, Rahul MITAL, Eric Darvin THOMAS
  • Patent number: 11848462
    Abstract: A battery outgassing filter system is provided. The system includes a battery cell, an external casing encapsulating the battery cell and including a casing vent, and an outgassing filter disposed upon the casing vent and including a filter element including a first filter element portion operable to contain a first size of particulate matter and a second filter element portion operable to contain a second size of particulate matter relatively smaller than the first size of particulate matter.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: December 19, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Rahul Mital, Bryan D. Axe
  • Publication number: 20230203976
    Abstract: An exhaust system includes a selective catalytic reduction (SCR) catalyst, a diesel oxidation catalyst, and an ammonia slip catalyst. The SCR catalyst is configured to reduce nitrogen oxide in exhaust gas produced by a diesel engine. The diesel oxidation catalyst is configured to reduce particulate matter, hydrocarbon, and carbon monoxide in the exhaust gas. The diesel oxidation catalyst is disposed downstream of the first SCR catalyst. The ammonia slip catalyst is configured to reduce ammonia in the exhaust gas. The ammonia slip catalyst is disposed downstream of the first SCR catalyst and upstream of the first diesel oxidation catalyst.
    Type: Application
    Filed: December 27, 2021
    Publication date: June 29, 2023
    Inventors: Rahul MITAL, Jianwen LI, Eric Darvin Thomas
  • Publication number: 20220278418
    Abstract: A battery outgassing filter system is provided. The system includes a battery cell, an external casing encapsulating the battery cell and including a casing vent, and an outgassing filter disposed upon the casing vent and including a filter element including a first filter element portion operable to contain a first size of particulate matter and a second filter element portion operable to contain a second size of particulate matter relatively smaller than the first size of particulate matter.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rahul Mital, Bryan D. Axe
  • Patent number: 10927733
    Abstract: A system to mitigate diesel exhaust fluid deposits in vehicle exhaust system flexible couplings includes a diesel exhaust pipeline. A diesel exhaust fluid injector is connected to the diesel exhaust pipeline to inject a diesel exhaust fluid into the diesel exhaust pipeline. A flexible coupling is connected to the diesel exhaust pipeline. A diesel exhaust fluid collection device is positioned in the diesel exhaust pipeline between a connection location into the diesel exhaust pipeline of the diesel exhaust fluid injector and the flexible coupling. The diesel exhaust fluid collection device includes a liquid diesel exhaust fluid collection volume where an un-vaporized portion of the diesel exhaust fluid is collected.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: February 23, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rahul Mital, Daryl J. D'Andrea, Bilal A. Rathur
  • Patent number: 10907521
    Abstract: Internal combustion engine (ICE) exhaust gas treatment systems include the ICE having one or more cylinders configured to receive a mixture of air and fuel defined by an air to fuel ratio (AFR) for combustion therein, a control module configured to control the AFR, a diesel oxidation catalyst (DOC) configured to receive exhaust gas generated by the ICE and oxidize NOx species within the exhaust gas, and a selective catalytic reduction device (SCR) configured to receive exhaust gas from the DOC. Methods for operating and diagnosing such systems include determining, via the control module, a baseline value of a SCR performance parameter which is unsuitable, changing, via the control module, the AFR to change the DOC outlet NO2:NOx ratio, subsequently assessing a second value of the SCR performance parameter, and implementing a control action based on the second value of the SCR performance parameter.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 2, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shouxian Ren, Gongshin Qi, Rahul Mital, Anirban Sett
  • Publication number: 20200386133
    Abstract: A system to mitigate diesel exhaust fluid deposits in vehicle exhaust system flexible couplings includes a diesel exhaust pipeline. A diesel exhaust fluid injector is connected to the diesel exhaust pipeline to inject a diesel exhaust fluid into the diesel exhaust pipeline. A flexible coupling is connected to the diesel exhaust pipeline. A diesel exhaust fluid collection device is positioned in the diesel exhaust pipeline between a connection location into the diesel exhaust pipeline of the diesel exhaust fluid injector and the flexible coupling. The diesel exhaust fluid collection device includes a liquid diesel exhaust fluid collection volume where an un-vaporized portion of the diesel exhaust fluid is collected.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 10, 2020
    Inventors: Rahul Mital, Daryl J. D'Andrea, Bilal A. Rathur
  • Patent number: 10760464
    Abstract: Methods for monitoring and/or regenerating a selective catalytic reduction particulate filter (SCRF) are provided. The SCRF comprises a porous filter substrate and a catalytic composition capable of reducing NOx applied thereto. Methods include determining a SCRF pressure differential (dP) and determining the SCRF soot loading using a 1st SCRF dP map if the SCRF has not been degreened, or a 2nd SCRF dP map if the SCRF has been degreened. The SCRF has been degreened if one or more of a degreening cumulative time and temperature threshold has been achieved and a filter regeneration count threshold has been achieved. The 1st and 2nd SCRF dP maps correlate SCRF dP and one or more of SCRF temperature, exhaust mass flow, and exhaust volumetric flow to a SCRF soot loading. The method can optionally further include initiating a filter regeneration if the determined SCRF soot loading is above a soot loading threshold.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: September 1, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jianwen Li, Rahul Mital
  • Publication number: 20200173327
    Abstract: Internal combustion engine (ICE) exhaust gas treatment systems include the ICE having one or more cylinders configured to receive a mixture of air and fuel defined by an air to fuel ratio (AFR) for combustion therein, a control module configured to control the AFR, a diesel oxidation catalyst (DOC) configured to receive exhaust gas generated by the ICE and oxidize NOx species within the exhaust gas, and a selective catalytic reduction device (SCR) configured to receive exhaust gas from the DOC. Methods for operating and diagnosing such systems include determining, via the control module, a baseline value of a SCR performance parameter which is unsuitable, changing, via the control module, the AFR to change the DOC outlet NO2:NOx ratio, subsequently assessing a second value of the SCR performance parameter, and implementing a control action based on the second value of the SCR performance parameter.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Inventors: Shouxian Ren, Gongshin Qi, Rahul Mital, Anirban Sett
  • Patent number: 10309278
    Abstract: Described herein is a desulfurization method for desulfurizing a SCR device treating an exhaust gas. The desulfurization method includes injecting a reductant into the exhaust gas upstream from or into the SCR device and increasing a temperature of the exhaust gas.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: June 4, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rahul Mital, Gongshin Qi, Anil Yadav
  • Publication number: 20190101034
    Abstract: Described herein is a desulfurization method for desulfurizing a SCR device treating an exhaust gas. The desulfurization method includes injecting a reductant into the exhaust gas upstream from or into the SCR device and increasing a temperature of the exhaust gas.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 4, 2019
    Inventors: Rahul Mital, Gongshin Qi, Anil Yadav
  • Publication number: 20190040783
    Abstract: Methods for monitoring and/or regenerating a selective catalytic reduction particulate filter (SCRF) are provided. The SCRF comprises a porous filter substrate and a catalytic composition capable of reducing NOx applied thereto. Methods include determining a SCRF pressure differential (dP) and determining the SCRF soot loading using a 1st SCRF dP map if the SCRF has not been degreened, or a 2nd SCRF dP map if the SCRF has been degreened. The SCRF has been degreened if one or more of a degreening cumulative time and temperature threshold has been achieved and a filter regeneration count threshold has been achieved. The 1st and 2nd SCRF dP maps correlate SCRF dP and one or more of SCRF temperature, exhaust mass flow, and exhaust volumetric flow to a SCRF soot loading. The method can optionally further include initiating a filter regeneration if the determined SCRF soot loading is above a soot loading threshold.
    Type: Application
    Filed: August 7, 2017
    Publication date: February 7, 2019
    Inventors: Jianwen Li, Rahul Mital
  • Patent number: 10138779
    Abstract: Selective catalytic reduction filter (SCRF) devices and systems incorporating the same are provided. Systems can include an exhaust gas source, an exhaust gas conduit capable of receiving an exhaust gas stream from the exhaust gas source, and an SCRF device in fluid communication therewith. The SCRF device can include a filter, a selective catalytic reduction (SCR) catalyst disposed on at least portion of the filter, and a NOx storage coating on at least a portion of the filter. The NOx storage coating can include one or more of palladium, barium, or cerium. The NOx storage coating can be biased towards the upstream side of the filter. The NOx storage coating can overlap a portion of the SCR catalyst. The system can further include a water-absorbing alkali oxide. The water-absorbing alkali oxide can be disposed within the SCRF device, the exhaust gas conduit, or in an upstream oxidation catalyst device.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: November 27, 2018
    Inventors: Rahul Mital, Gongshin Qi, Charles Dean, Charles Solbrig
  • Patent number: 10138789
    Abstract: An exhaust gas treatment system includes a selective catalytic reduction device (SCR); a reductant injector upstream from the SCR and configured to communicate reductant into the SCR via a conduit defined by an outer periphery, a first mixer disposed within the conduit upstream from the reductant injector, and a second mixer disposed within the conduit downstream from the reductant injector and upstream from the SCR. Each of the first mixer and the second mixer comprises a plurality of blades extending between a center region of the conduit to the conduit periphery, wherein each of the blades at least partially obstructs fluid flow through the conduit and are angled relative to a cross sectional plane of the conduit such that fluid flow is permitted between adjacent blades, and the plurality of blades form a turbulence plane defined by a plane angle measured from the two outermost blades of the turbulence plane.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: November 27, 2018
    Inventors: Prashant Kumar Mishra, Asif Iqbal Siddiqui, Anil Yadav, Rahul Mital
  • Publication number: 20180334939
    Abstract: Electric heaters comprising corrosion resistant metals (CRM), and exhaust gas treatment systems incorporating the same, are provided. Exhaust gas treatment systems include selective catalytic reduction devices (SCR) disposed downstream from reductant injectors. Electric heaters can be disposed downstream from reductant injectors, and optionally contiguous with or incorporated with a catalytic composition of the SCR. CRMs resist corrosion to reductant, which includes t ammonia and/or nitrogen-rich substances capable of decomposing into ammonia, such as urea. CRMs include aluminum, chromium, iron, and one or more stabilizers. CRMs can include about 5.0% to about 7.25% aluminum, about 15% to about 25% chromium, up to about 0.30% stabilizers, and a balance comprising iron. Stabilizers can include hafnium, yttrium, and zirconium. Stabilizers can include about 0.001% to about 0.11% yttrium and about 0.001% to about 0.11% Hf.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 22, 2018
    Inventors: Rahul Mital, Charles Solbrig, Yong Miao, David Brown
  • Patent number: 10125659
    Abstract: An exhaust gas treatment device includes a housing having a wall. The wall of the housing defines an interior chamber. A substrate is supported by the housing within the interior chamber of the housing. The substrate extends along a longitudinal axis. The substrate includes a flow through structure that allows the flow of exhaust gas to flow through the substrate. The substrate includes a catalytic composition disposed thereon for reacting with the flow of exhaust gas. The substrate includes a cavity, extending along a cavity axis, which is transverse to the longitudinal axis of the substrate. A sensor is attached to the housing. The sensor includes a probe that at least partially extends into the cavity of the substrate, for sensing a gaseous component in the flow of exhaust gas. The cavity mixes the flow of exhaust gas and directs the exhaust gas toward the probe of the sensor.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: November 13, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Luciano Nunziato Di Perna, Jianwen Li, Raffaello Ardanese, Rahul Mital, David B. Brown
  • Patent number: 10047651
    Abstract: Selective catalytic reduction filter (SCRF) devices and systems incorporating the same are provided. Systems can include an exhaust gas source, an exhaust gas conduit capable of receiving an exhaust gas stream from the exhaust gas source, and an SCRF device in fluid communication therewith. The SCRF device can include a filter, a selective catalytic reduction (SCR) catalyst disposed on at least portion of the filter, and a soot oxidizing catalyst (SOC) material disposed on at least a portion of one or more of the filter and the SCR catalyst. The SOC material can include one or more transition metal oxides, excluding platinum group metals. The SOC material can include one or more of a titanium oxide, an iron oxide, a tungsten oxide, a cerium oxide, and acidic zirconia. The SOC material can be in amorphous form. The SOC material can be biased towards to the upstream side of the filter.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: August 14, 2018
    Inventors: Rahul Mital, David Brown, Wei Li, Jianwen Li
  • Patent number: 10040029
    Abstract: A method is disclosed of providing a fuel efficient regeneration of an exhaust after-treatment (AT) system that includes a lean oxides of nitrogen (NOX) trap (LNT) and a selective catalytic reduction filter (SCRF) positioned downstream of the LNT. The method includes regulating a selectable position valve. The valve permits a first gas flow portion to pass through the LNT and diverts a remaining second portion of exhaust gas flow from a first passage connecting an engine and the AT system to a second exhaust passage to thereby bypass the LNT. The method also includes regulating a first device to inject fuel into the first portion of the exhaust gas flow. The injection of fuel in to the first portion of the exhaust gas flow provides fuel efficient regeneration of the LNT and promotes NOX conversion and ammonia (NH3) formation in the LNT. A system employing the method is also disclosed.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: August 7, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Rahul Mital, Jianwen Li, Andrea De Filippo, Chang H Kim, Shouxian Ren
  • Patent number: 9995720
    Abstract: A snorkel assembly for reading optimization of a sensor, wherein the snorkel assembly may be configured to be positioned around and spaced apart from the sensor. The snorkel assembly may include an upstream side and a downstream side. The snorkel assembly may include a cup section and a tube section extending from the cup section. The tube section may include an inlet opening on the upstream side of the snorkel assembly. The cup section may include an exhaust opening on the downstream side of the snorkel assembly.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: June 12, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Luciano Nunziato Di Perna, Chijou Wang, Rahul Mital, Jianwen Li, James B. Rodgers
  • Publication number: 20180156089
    Abstract: Selective catalytic reduction filter (SCRF) devices and systems incorporating the same are provided. Systems can include an exhaust gas source, an exhaust gas conduit capable of receiving an exhaust gas stream from the exhaust gas source, and an SCRF device in fluid communication therewith. The SCRF device can include a filter, a selective catalytic reduction (SCR) catalyst disposed on at least portion of the filter, and a soot oxidizing catalyst (SOC) material disposed on at least a portion of one or more of the filter and the SCR catalyst. The SOC material can include one or more transition metal oxides, excluding platinum group metals. The SOC material can include one or more of a titanium oxide, an iron oxide, a tungsten oxide, a cerium oxide, and acidic zirconia. The SOC material can be in amorphous form. The SOC material can be biased towards to the upstream side of the filter.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 7, 2018
    Inventors: Rahul Mital, David Brown, Wei Li, Jianwen Li