Patents by Inventor Rahul R. Shah
Rahul R. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12293231Abstract: Examples described herein include a device interface; a first set of one or more processing units; and a second set of one or more processing units. In some examples, the first set of one or more processing units are to perform heavy flow detection for packets of a flow and the second set of one or more processing units are to perform processing of packets of a heavy flow. In some examples, the first set of one or more processing units and second set of one or more processing units are different. In some examples, the first set of one or more processing units is to allocate pointers to packets associated with the heavy flow to a first set of one or more queues of a load balancer and the load balancer is to allocate the packets associated with the heavy flow to one or more processing units of the second set of one or more processing units based, at least in part on a packet receive rate of the packets associated with the heavy flow.Type: GrantFiled: September 10, 2021Date of Patent: May 6, 2025Assignee: Intel CorporationInventors: Chenmin Sun, Yipeng Wang, Rahul R. Shah, Ren Wang, Sameh Gobriel, Hongjun Ni, Mrittika Ganguli, Edwin Verplanke
-
Patent number: 12197357Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.Type: GrantFiled: December 20, 2021Date of Patent: January 14, 2025Assignee: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Patent number: 12189550Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.Type: GrantFiled: July 5, 2023Date of Patent: January 7, 2025Assignee: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Patent number: 12066939Abstract: Examples described herein relate to a manner of demoting multiple cache lines to shared memory. In some examples, a shared cache is accessible by at least two processor cores and a region of the cache is larger than a cache line and is designated for demotion from the cache to the shared cache. In some examples, the cache line corresponds to a memory address in a region of memory. In some examples, an indication that the region of memory is associated with a cache line demote operation is provided in an indicator in a page table entry (PTE). In some examples, the indication that the region of memory is associated with a cache line demote operation is based on a command in an application executed by a processor. In some examples, the cache is an level 1 (L1) or level 2 (L2) cache.Type: GrantFiled: October 30, 2020Date of Patent: August 20, 2024Assignee: Intel CorporationInventors: Rahul R. Shah, Omkar Maslekar, Priya Autee, Edwin Verplanke, Andrew J. Herdrich, Jeffrey D. Chamberlain
-
Publication number: 20240012772Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.Type: ApplicationFiled: July 5, 2023Publication date: January 11, 2024Applicant: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Patent number: 11741030Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.Type: GrantFiled: December 25, 2020Date of Patent: August 29, 2023Assignee: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Publication number: 20230082780Abstract: Examples described herein include a device interface; a first set of one or more processing units; and a second set of one or more processing units. In some examples, the first set of one or more processing units are to perform heavy flow detection for packets of a flow and the second set of one or more processing units are to perform processing of packets of a heavy flow. In some examples, the first set of one or more processing units and second set of one or more processing units are different. In some examples, the first set of one or more processing units is to allocate pointers to packets associated with the heavy flow to a first set of one or more queues of a load balancer and the load balancer is to allocate the packets associated with the heavy flow to one or more processing units of the second set of one or more processing units based, at least in part on a packet receive rate of the packets associated with the heavy flow.Type: ApplicationFiled: September 10, 2021Publication date: March 16, 2023Inventors: Chenmin SUN, Yipeng WANG, Rahul R. SHAH, Ren WANG, Sameh GOBRIEL, Hongjun NI, Mrittika GANGULI, Edwin VERPLANKE
-
Patent number: 11354264Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.Type: GrantFiled: February 25, 2021Date of Patent: June 7, 2022Assignee: INTEL CORPORATIONInventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
-
Patent number: 11355278Abstract: Dry-type transformers with insulating modules are disclosed. Example insulating modules include dielectric screens and supporting blocks. The supporting blocks support the dielectric screens over windings of the transformer. The dielectric screens have first substantially even portions configured to adapt in spaces defined by corresponding cylindrical barriers arranged between first and second windings of the transformers and second substantially even portions, transversal to the first portions and to the first windings of the transformers and extending outwards from the first portions and beyond the supporting blocks. The dielectric screens partly extend around a winding.Type: GrantFiled: May 30, 2018Date of Patent: June 7, 2022Assignee: Hitachi Energy Switzerland AGInventors: Antonio Nogués Barrieras, Carlos Roy Martín, Lorena Cebrián Lles, Rafael Murillo, Luis Sánchez Lago, Rahul R. Shah
-
Publication number: 20220114122Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.Type: ApplicationFiled: December 20, 2021Publication date: April 14, 2022Applicant: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Patent number: 11269793Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.Type: GrantFiled: July 23, 2020Date of Patent: March 8, 2022Assignee: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Publication number: 20210182231Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.Type: ApplicationFiled: February 25, 2021Publication date: June 17, 2021Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
-
Publication number: 20210117350Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.Type: ApplicationFiled: December 25, 2020Publication date: April 22, 2021Applicant: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Patent number: 10963415Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.Type: GrantFiled: February 26, 2020Date of Patent: March 30, 2021Assignee: INTEL CORPORATIONInventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
-
Publication number: 20210073129Abstract: Examples described herein relate to a manner of demoting multiple cache lines to shared memory. In some examples, a shared cache is accessible by at least two processor cores and a region of the cache is larger than a cache line and is designated for demotion from the cache to the shared cache. In some examples, the cache line corresponds to a memory address in a region of memory. In some examples, an indication that the region of memory is associated with a cache line demote operation is provided in an indicator in a page table entry (PTE). In some examples, the indication that the region of memory is associated with a cache line demote operation is based on a command in an application executed by a processor. In some examples, the cache is an level 1 (L1) or level 2 (L2) cache.Type: ApplicationFiled: October 30, 2020Publication date: March 11, 2021Inventors: Rahul R. SHAH, Omkar MASLEKAR, Priya AUTEE, Edwin VERPLANKE, Andrew J. HERDRICH, Jeffrey D. CHAMBERLAIN
-
Patent number: 10931329Abstract: An apparatus includes an agent to facilitate communication in one of two or more modes, where a first of the two or more modes involves communication over links including a first number of lanes and a second of the two or more modes involves communication over links including a second number of lanes, and the first number is greater than the second number. The apparatus further includes a memory including data to indicate which of the two or modes applies to a particular link and a multiplexer to reverse lane numbering on links including either the first number of lanes or the second number of lanes.Type: GrantFiled: December 29, 2016Date of Patent: February 23, 2021Assignee: Intel CorporationInventors: Rahul R. Shah, William R. Halleck, Fulvio Spagna, Venkatraman Iyer
-
Publication number: 20200402708Abstract: Dry-type transformers with insulating modules are disclosed. Example insulating modules include dielectric screens and supporting blocks. The supporting blocks support the dielectric screens over windings of the transformer. The dielectric screens have first substantially even portions configured to adapt in spaces defined by corresponding cylindrical barriers arranged between first and second windings of the transformers and second substantially even portions, transversal to the first portions and to the first windings of the transformers and extending outwards from the first portions and beyond the supporting blocks. The dielectric screens partly extend around a winding.Type: ApplicationFiled: May 30, 2018Publication date: December 24, 2020Applicant: ABB SCHWEIZ AGInventors: Antonio NOGUÉS BARRIERAS, Carlos ROY MARTÍN, Lorena CEBRIÁN LLES, Rafael MURILLO, Luis SÁNCHEZ LAGO, Rahul R. SHAH
-
Publication number: 20200356502Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.Type: ApplicationFiled: July 23, 2020Publication date: November 12, 2020Applicant: Intel CorporationInventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
-
Publication number: 20200293480Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.Type: ApplicationFiled: February 26, 2020Publication date: September 17, 2020Applicant: INTEL CORPORATIONInventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
-
Patent number: 10599602Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.Type: GrantFiled: June 20, 2019Date of Patent: March 24, 2020Assignee: Intel CorporationInventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee