Patents by Inventor Rahul R. Shah

Rahul R. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240012772
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 11, 2024
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 11741030
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20230082780
    Abstract: Examples described herein include a device interface; a first set of one or more processing units; and a second set of one or more processing units. In some examples, the first set of one or more processing units are to perform heavy flow detection for packets of a flow and the second set of one or more processing units are to perform processing of packets of a heavy flow. In some examples, the first set of one or more processing units and second set of one or more processing units are different. In some examples, the first set of one or more processing units is to allocate pointers to packets associated with the heavy flow to a first set of one or more queues of a load balancer and the load balancer is to allocate the packets associated with the heavy flow to one or more processing units of the second set of one or more processing units based, at least in part on a packet receive rate of the packets associated with the heavy flow.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Inventors: Chenmin SUN, Yipeng WANG, Rahul R. SHAH, Ren WANG, Sameh GOBRIEL, Hongjun NI, Mrittika GANGULI, Edwin VERPLANKE
  • Patent number: 11354264
    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: June 7, 2022
    Assignee: INTEL CORPORATION
    Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
  • Patent number: 11355278
    Abstract: Dry-type transformers with insulating modules are disclosed. Example insulating modules include dielectric screens and supporting blocks. The supporting blocks support the dielectric screens over windings of the transformer. The dielectric screens have first substantially even portions configured to adapt in spaces defined by corresponding cylindrical barriers arranged between first and second windings of the transformers and second substantially even portions, transversal to the first portions and to the first windings of the transformers and extending outwards from the first portions and beyond the supporting blocks. The dielectric screens partly extend around a winding.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 7, 2022
    Assignee: Hitachi Energy Switzerland AG
    Inventors: Antonio Nogués Barrieras, Carlos Roy Martín, Lorena Cebrián Lles, Rafael Murillo, Luis Sánchez Lago, Rahul R. Shah
  • Publication number: 20220114122
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 11269793
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: March 8, 2022
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20210182231
    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
  • Publication number: 20210117350
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: December 25, 2020
    Publication date: April 22, 2021
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 10963415
    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: March 30, 2021
    Assignee: INTEL CORPORATION
    Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
  • Publication number: 20210073129
    Abstract: Examples described herein relate to a manner of demoting multiple cache lines to shared memory. In some examples, a shared cache is accessible by at least two processor cores and a region of the cache is larger than a cache line and is designated for demotion from the cache to the shared cache. In some examples, the cache line corresponds to a memory address in a region of memory. In some examples, an indication that the region of memory is associated with a cache line demote operation is provided in an indicator in a page table entry (PTE). In some examples, the indication that the region of memory is associated with a cache line demote operation is based on a command in an application executed by a processor. In some examples, the cache is an level 1 (L1) or level 2 (L2) cache.
    Type: Application
    Filed: October 30, 2020
    Publication date: March 11, 2021
    Inventors: Rahul R. SHAH, Omkar MASLEKAR, Priya AUTEE, Edwin VERPLANKE, Andrew J. HERDRICH, Jeffrey D. CHAMBERLAIN
  • Patent number: 10931329
    Abstract: An apparatus includes an agent to facilitate communication in one of two or more modes, where a first of the two or more modes involves communication over links including a first number of lanes and a second of the two or more modes involves communication over links including a second number of lanes, and the first number is greater than the second number. The apparatus further includes a memory including data to indicate which of the two or modes applies to a particular link and a multiplexer to reverse lane numbering on links including either the first number of lanes or the second number of lanes.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Rahul R. Shah, William R. Halleck, Fulvio Spagna, Venkatraman Iyer
  • Publication number: 20200402708
    Abstract: Dry-type transformers with insulating modules are disclosed. Example insulating modules include dielectric screens and supporting blocks. The supporting blocks support the dielectric screens over windings of the transformer. The dielectric screens have first substantially even portions configured to adapt in spaces defined by corresponding cylindrical barriers arranged between first and second windings of the transformers and second substantially even portions, transversal to the first portions and to the first windings of the transformers and extending outwards from the first portions and beyond the supporting blocks. The dielectric screens partly extend around a winding.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 24, 2020
    Applicant: ABB SCHWEIZ AG
    Inventors: Antonio NOGUÉS BARRIERAS, Carlos ROY MARTÍN, Lorena CEBRIÁN LLES, Rafael MURILLO, Luis SÁNCHEZ LAGO, Rahul R. SHAH
  • Publication number: 20200356502
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20200293480
    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
  • Patent number: 10599602
    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 24, 2020
    Assignee: Intel Corporation
    Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
  • Publication number: 20190391939
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Application
    Filed: February 25, 2019
    Publication date: December 26, 2019
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20190310959
    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.
    Type: Application
    Filed: June 20, 2019
    Publication date: October 10, 2019
    Applicant: INTEL CORPORATION
    Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
  • Patent number: 10372657
    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The low pin count PIPE interface is configured to transfer register commands between the PHY and MAC blocks over the small set of wires in a time-multiplexed manner to support read and write access of the PHY and MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture when operating in a PIPE mode and a serialization and deserialization (SERDES) architecture when operating in a SERDES mode.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: August 6, 2019
    Assignee: Intel Corporation
    Inventors: Venkatraman Iyer, William R. Halleck, Rahul R. Shah, Eric Lee
  • Patent number: 10324882
    Abstract: An exit pattern is sent to initiate exit from a partial width state, where only a portion of the available lanes of a link are used to transmit data and the remaining lanes are idle. The exit pattern is sent on the idle lanes, the exit pattern including an electrical ordered set (EOS), one or more fast training sequences (FTS), a start of data sequence (SDS), and a partial fast training sequence (FTSp). The SDS includes a byte number field to indicate a number of a bytes measured from a previous control interval of the link, and an end of the SDS is sent to coincide with a clean flit boundary on the active lanes. The partial width state is exited based on the exit pattern and data is sent on all available lanes following the exit from the partial width state.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: June 18, 2019
    Assignee: Intel Corporation
    Inventors: William R. Halleck, Rahul R. Shah, Venkatraman Iyer