Patents by Inventor Rainer Figge

Rainer Figge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10858679
    Abstract: Process for the production of methionine or its derivatives by culturing a microorganism in an appropriate culture medium comprising a source of carbon and a source of sulfur. The microorganism and/or the culture medium are modified in such way that the methionine/carbon source yield is increased. The isolation of methionine or its derivates from the fermentation medium is also described.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: December 8, 2020
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Rainer Figge, Philippe Soucaille, Guillaume Barbier, Gwénaëlle Bestel-Corre, Cédric Boisart, Michel Chateau
  • Patent number: 10329591
    Abstract: The present invention is related to a recombinant microorganism optimized for the fermentative production of methionine and/or its derivatives, wherein in said recombinant strain, the methionine efflux is enhanced by overexpressing the homologous logous genes of ygaZ and ygaH genes from Escherichia coli. It is also related to a method for optimizing the fermentative production of methionine or its derivatives comprising the steps of: a. culturing a recombinant microorganism wherein in said microorganism, the methionine efflux is enhanced by overexpressing the ygaZH homologous genes of ygaZ and ygaH genes from Escherichia coli, in an appropriate culture medium comprising a fermentable source of carbon and a source of sulphur, and b. recovering methionine and/or its derivatives from the culture medium.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: June 25, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Rainer Figge, Laurence Dumon-Seignovert, Perrine Vasseur, Wanda Dischert
  • Patent number: 10196658
    Abstract: The present application is related to a recombinant microorganism optimized for the fermentative production of methionine and/or its derivatives, wherein in said recombinant microorganism, the cobalamin-dependent methionine synthase activity and the methionine efflux are enhanced. The application is also related to a method for optimizing the fermentative production of methionine and/or its derivatives comprising the steps of: c. culturing a recombinant microorganism wherein in said microorganism, the cobalamin-dependent methionine synthase activity and the methionine efflux are enhanced, in an appropriate culture medium comprising a fermentable source of carbon and a source of sulphur, and d. recovering methionine and/or its derivatives from the culture medium.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: February 5, 2019
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Wanda Dischert, Perrine Vasseur, Rainer Figge
  • Patent number: 10059970
    Abstract: The present invention is related to a recombinant Escherichia coli (E. coli) strain optimised for the fermentative production of methionine and/or its derivatives, wherein in said recombinant strain, the methionine import is attenuated and the methionine efflux is enhanced. It is also related to a method for optimising the fermentative production of methionine or its derivatives comprising the steps of: a. culturing a recombinant microorganism wherein in said microorganism, the methionine import is attenuated and the methionine efflux is enhanced, in an appropriate culture medium comprising a fermentable source of carbon and a source of sulphur, and b. recovering methionine and/or its derivatives from the culture medium.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: August 28, 2018
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Rainer Figge, Laurence Dumon-Seignovert
  • Patent number: 9988655
    Abstract: The present invention relates to use of inducible promoters in the production of methionine by fermentation. The present invention concerns a method for the production of methionine, its precursors or derivatives in a fermentative process comprising the following steps: culturing a modified microorganism in an appropriate culture medium comprising a source of carbon, a source of sulphur and a source of nitrogen, and recovering methionine and/or its derivatives from the culture medium, wherein in said modified microorganism, the expression of at least one gene involved in methionine production is under the control, direct or indirect, of a heterologous inducible promoter. The invention also concerned the modified microorganism used in the method.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: June 5, 2018
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Rainer Figge, Perrine Vasseur
  • Publication number: 20170306366
    Abstract: The present invention relates to use of inducible promoters in the production of methionine by fermentation. The present invention concerns a method for the production of methionine, its precursors or derivatives in a fermentative process comprising the following steps: culturing a modified microorganism in an appropriate culture medium comprising a source of carbon, a source of sulphur and a source of nitrogen, and recovering methionine and/or its derivatives from the culture medium, wherein in said modified microorganism, the expression of at least one gene involved in methionine production is under the control, direct or indirect, of a heterologous inducible promoter. The invention also concerned the modified microorganism used in the method.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 26, 2017
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Rainer FIGGE, Perrine VASSEUR
  • Publication number: 20170240938
    Abstract: The present invention is related to a recombinant microorganism optimised for the fermentative production of methionine and/or its derivatives, wherein in said recombinant strain, the methionine efflux is enhanced by overexpressing the homologous logous genes of ygaZ and ygaH genes from Escherichia coli. It is also related to a method for optimising the fermentative production of methionine or its derivatives comprising the steps of: a. culturing a recombinant microorganism wherein in said microorganism, the methionine efflux is enhanced by overexpressing the ygaZH homologous genes of ygaZ and ygaH genes from Escherichia coli, in an appropriate culture medium comprising a fermentable source of carbon and a source of sulphur, and b. recovering methionine and/or its derivatives from the culture medium.
    Type: Application
    Filed: August 31, 2015
    Publication date: August 24, 2017
    Applicant: METABOLIC EXPLORER
    Inventors: Rainer FIGGE, Laurence DUMON-SEIGNOVERT, Perrine VASSEUR, Wanda DISCHERT
  • Patent number: 9732364
    Abstract: The present invention relates to use of inducible promoters in the production of methionine by fermentation. The present invention concerns a method for the production of methionine, its precursors or derivatives in a fermentative process comprising the following steps: culturing a modified microorganism in an appropriate culture medium comprising a source of carbon, a source of sulphur and a source of nitrogen, and recovering methionine and/or its derivatives from the culture medium, wherein in said modified microorganism, the expression of at least one gene involved in methionine production is under the control, direct or indirect, of a heterologous inducible promoter. The invention also concerned the modified microorganism used in the method.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: August 15, 2017
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Rainer Figge, Perrine Vasseur
  • Patent number: 9617567
    Abstract: The present invention is relative to a method for producing 1,2-propanediol by fermentation, comprising: cultivating a microorganism producing 1,2-propanediol in an appropriate medium comprising a source of sucrose, and recovering the 1,2-propanediol being produced, wherein the microorganism is able to utilize sucrose as sole carbon source for the production of 1,2-propanediol. In a preferred aspect of the invention, the source of sucrose is obtained from plant biomass, and is in particular sugar cane juice.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: April 11, 2017
    Assignee: METABOLIC EXPLORER
    Inventors: Francois Voelker, Rainer Figge, Philippe Soucaille
  • Patent number: 9506092
    Abstract: The present invention is related to a recombinant microorganism for improved methionine production comprising modifications to produce methionine from glucose as main carbon source by fermentation, and modifications to improve glucose import, wherein the glucose import is improved by modifying the expression of at least one gene selected from ptsG, sgrT sgrS and dgsA. The invention is also related to a method for the fermentative production of methionine or methionine derivatives comprising the steps of: culturing the recombinant microorganism as described above in an appropriate culture medium comprising a fermentable source of carbon containing glucose and a source of sulphur, and recovering methionine or methionine derivatives from the culture medium.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 29, 2016
    Assignee: METABOLIC EXPLORER
    Inventors: Wanda Dischert, Rainer Figge
  • Patent number: 9506093
    Abstract: The present invention is related to a recombinant microorganism optimized for the fermentative production of methionine, wherein the activity of the cobalamin-independent methionine synthase MetE is attenuated in said microorganism. The invention is also related to a method for producing methionine by fermentation.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: November 29, 2016
    Assignee: METABOLIC EXPLORER
    Inventors: Wanda Dischert, Rainer Figge
  • Patent number: 9382561
    Abstract: The present invention relates to a method for the production of methionine using modified strains with attenuated transformation of threonine. This can be achieved by reducing threonine transformation into glycine, and/or by reducing its transformation to ?-ketobutyrate. The invention also concerns the modified strains with attenuated transformation of threonine.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 5, 2016
    Assignee: METABOLIC EXPLORER
    Inventors: Cedric Boisart, Gwenaelle Bestel-Corre, Guillaume Barbier, Rainer Figge
  • Publication number: 20160177352
    Abstract: The present application is related to a recombinant microorganism optimised for the fermentative production of methionine and/or its derivatives, wherein in said recombinant microorganism, the cobalamin-dependent methionine synthase activity and the methionine efflux are enhanced. The application is also related to a method for optimizing the fermentative production of methionine and/or its derivatives comprising the steps of: c. culturing a recombinant microorganism wherein in said microorganism, the cobalamin-dependent methionine synthase activity and the methionine efflux are enhanced, in an appropriate culture medium comprising a fermentable source of carbon and a source of sulphur, and d. recovering methionine and/or its derivatives from the culture medium.
    Type: Application
    Filed: September 1, 2014
    Publication date: June 23, 2016
    Applicant: METABOLIC EXPLORER
    Inventors: Wanda DISCHERT, Perrine VASSEUR, Rainer FIGGE
  • Publication number: 20160177351
    Abstract: The present invention is related to a recombinant Escherichia coli (E. coli) strain optimised for the fermentative production of methionine and/or its derivatives, wherein in said recombinant strain, the methionine import is attenuated and the methionine efflux is enhanced. It is also related to a method for optimising the fermentative production of methionine or its derivatives comprising the steps of: a. culturing a recombinant microorganism wherein in said microorganism, the methionine import is attenuated and the methionine efflux is enhanced, in an appropriate culture medium comprising a fermentable source of carbon and a source of sulphur, and b. recovering methionine and/or its derivatives from the culture medium.
    Type: Application
    Filed: September 1, 2014
    Publication date: June 23, 2016
    Applicant: METABOLIC EXPLORER
    Inventors: Rainer FIGGE, Laurence DUMON-SEIGNOVERT
  • Publication number: 20160160249
    Abstract: Process for the production of methionine or its derivatives by culturing a microorganism in an appropriate culture medium comprising a source of carbon and a source of sulfur. The microorganism and/or the culture medium are modified in such way that the methionine/carbon source yield is increased. The isolation of methionine or its derivates from the fermentation medium is also described.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Applicant: METABOLIC EXPLORER
    Inventors: Rainer FIGGE, Philippe SOUCAILLE, Guillaume BARBIER, Gwénaëlle BESTEL-CORRE, Cédric BOISART, Michel CHATEAU
  • Patent number: 9267160
    Abstract: The present invention relates to a process for improving the production of methionine by culturing a microorganism modified for enhancing the expression of genes involved in succinate dehydrogenase synthesis. The microorganisms were modified in a way that the methionine/carbon source yield is increased. The isolation of methionine from the fermentation medium is also claimed.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: February 23, 2016
    Assignee: METABOLIC EXPLORER
    Inventor: Rainer Figge
  • Patent number: 9187775
    Abstract: A method of producing methionine, derivatives or precursors thereof includes culturing a modified microorganism in a culture medium comprising a source of carbon and a source of sulfur; and recovering methionine from the culture medium, wherein said modified microorganism has an increased expression of cysE gene encoding serine acetyltransferase, metH gene encoding methionine synthase and metF gene encoding 5,10-methylenetetrahydrofolate reductase compared to expression of the cysE, metH and metF genes in an unmodified microorganism.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: November 17, 2015
    Assignee: Metabolic Explorer
    Inventors: Rainer Figge, Fabien Lux, Céline Raynaud, Michel Chateau, Philippe Soucaille
  • Publication number: 20150247175
    Abstract: The present invention is related to a recombinant microorganism optimised for the fermentative production of methionine, wherein the activity of the cobalamin-independent methionine synthase MetE is attenuated in said microorganism. The invention is also related to a method for producing methionine by fermentation.
    Type: Application
    Filed: June 18, 2012
    Publication date: September 3, 2015
    Inventors: Wanda Dischert, Rainer Figge
  • Patent number: 9121043
    Abstract: The present invention relates to use of inducible promoters in the production of glycolic acid by fermentation. The present invention concerns a method for the production of glycolic acid in a fermentative process comprising the following steps: culturing a modified microorganism in an appropriate culture medium comprising a source of carbon, modulating in said microorganism the expression of a target gene with an external stimulus, and recovering glycolic acid from the culture medium, wherein in said modified microorganism, the expression of at least one gene involved in glycolic acid production is under the control of a heterologous inducible promoter whose activity is modulated with said external stimulus. The invention also concerned the modified microorganism used in the method of glycolic acid production.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 1, 2015
    Assignee: METABOLIC EXPLORER
    Inventors: Wanda Dischert, Rainer Figge, Philippe Soucaille
  • Publication number: 20150159181
    Abstract: The present invention is relative to a method for producing 1,2-propanediol by fermentation, comprising: cultivating a microorganism producing 1,2-propanediol in an appropriate medium comprising a source of sucrose, and recovering the 1,2-propanediol being produced, wherein the microorganism is able to utilize sucrose as sole carbon source for the production of 1,2-propanediol. In a preferred aspect of the invention, the source of sucrose is obtained from plant biomass, and is in particular sugar cane juice.
    Type: Application
    Filed: February 12, 2015
    Publication date: June 11, 2015
    Inventors: Francois VOELKER, Rainer FIGGE, Philippe SOUCAILLE