Patents by Inventor Raja Pullela

Raja Pullela has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180159573
    Abstract: Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a receiver with a low-noise amplifier (LNA) with first and second input terminals and differential output terminals; a low pass filter operably coupled to the LNA; a high pass filter operably coupled to the second input terminal of the LNA; and a signal source input coupled to the low pass filter and the high pass filter. The LNA may be operable to receive signals in a pass band of the high pass filter and a pass band of the low pass filter. The receiver may be operable to amplify input signals in the pass band of a first filter but not signals in the pass band of the second filter by operably coupling the second to ground.
    Type: Application
    Filed: February 2, 2018
    Publication date: June 7, 2018
    Inventors: Raja Pullela, Wenjian Chen, Vamsi Paidi
  • Patent number: 9966968
    Abstract: Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: May 8, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Raja Pullela, Curtis Ling
  • Publication number: 20180102784
    Abstract: Methods and systems are provided for gain control during communications. A first electronic device may communicated data to a second electronic device; may monitor conditions and/or parameters affecting estimated reception performance at the second electronic device; and may communicated to the second electronic device, via a connection separate from and different than a connection used in communicating the data, information relating to the monitored conditions, to enable adjusting functions relating to reception of the data at the second electronic device. Based on the received information, at least one reception related function in the second electronic device may be controlled. The controlling may include determining, based on the received information, adjustments to the at least one reception related function or to a related parameter. The at least one reception related function may include applying gain to at least a portion of signals received by the second electronic device.
    Type: Application
    Filed: September 18, 2017
    Publication date: April 12, 2018
    Inventors: Raja Pullela, Curtis Ling
  • Patent number: 9941986
    Abstract: A direct broadcast satellite (DBS) reception assembly may comprise an integrated circuit that is configurable between or among a plurality of configurations based on content requested by client devices served by the DBS reception assembly. In a first configuration, multiple satellite frequency bands may be digitized by the integrated circuit as a single wideband signal. In a second configuration, the satellite frequency bands may be digitized by the integrated circuit as a plurality of separate narrowband signals. The integrated circuit may comprise a plurality of receive paths, each of the receive chains comprising a respective one of a plurality of low noise amplifiers and a plurality of analog-to-digital converters.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 10, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Glenn Chang, Raja Pullela, Madhukar Reddy, Timothy Gallagher, Shanta Murthy Prem Swaroop, Curtis Ling, Vamsi Paidi, Wenjian Chen
  • Patent number: 9941927
    Abstract: A microwave backhaul system may comprise a monolithic integrated circuit comprising an on-chip transceiver, digital baseband processing circuitry, and auxiliary interface circuitry. The on-chip transceiver may process a microwave signal from an antenna element to generate a first pair of quadrature baseband signals and convey the first pair of phase-quadrature baseband signals to the digital baseband processing circuitry. The auxiliary interface circuitry may receive one or more auxiliary signals from a source that is external to the monolithic integrated circuit and convey the one or more auxiliary signals to the digital baseband processing circuitry. The digital baseband processing circuitry may be operable to process signals to generate one or more second pairs of phase-quadrature digital baseband signals.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 10, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Kishore Seendripu, Raja Pullela, Madhukar Reddy, Timothy Gallagher
  • Publication number: 20180069512
    Abstract: Systems and methods are provided for dynamically biasing power amplifiers. In particular, dynamic biasing of a power amplifier may be controlled, with the controlling comprising receiving an input signal that is to be amplified; processing the input signal; generating based on said processing of the input signal input signal, a plurality of control signals comprising at least one biasing control signal; and applying the plurality of control signals to one or more control elements that are used in driving and/or control of the power amplifier. The one or more control elements may comprise at least one biasing component that adjusts biasing applied to power amplifier.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 8, 2018
    Inventors: Rahul Bhatia, Timothy Gallagher, Raja Pullela, Sridhar Ramesh
  • Publication number: 20180054211
    Abstract: Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 22, 2018
    Inventors: Raja Pullela, Curtis Ling
  • Publication number: 20180048381
    Abstract: Methods and systems are provided for guard band detection and frequency offset detection. For each of a plurality of downconverted signals, frequency related information associated with one or more corresponding circuits used in obtaining the plurality of downconverted signals may be determined; and based on the determined frequency related information, one or both of a band stacking operation and a channel stacking operation may be performed. During the band stacking operation, frequency bands are not stacked on each other or stacked frequency bands do not overlap. During the channel stacking operation, channels are not stacked on each other or stacked channels do not overlap. The frequency related information may be determined based on predefined frequency related parameters associated with the corresponding circuits. Frequency corrections may be performed, on output signals corresponding to the band stacking operation and/or the channel stacking operation, based on the frequency related information.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 15, 2018
    Inventors: Raja Pullela, Glenn Chang, Sridhar Ramesh
  • Patent number: 9887719
    Abstract: Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a receiver with a low-noise amplifier (LNA) with first and second input terminals and differential output terminals; a low pass filter operably coupled to the LNA; a high pass filter operably coupled to the second input terminal of the LNA; and a signal source input coupled to the low pass filter and the high pass filter. The LNA may be operable to receive signals in a pass band of the high pass filter and a pass band of the low pass filter. The receiver may be operable to amplify input signals in the pass band of a first filter but not signals in the pass band of the second filter by operably coupling the second to ground.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 6, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Raja Pullela, Wenjian Chen, Vamsi Paidi
  • Patent number: 9882679
    Abstract: Methods and systems for improved cross polarization rejection and tolerating of coupling between satellite signals may comprise receiving radio frequency (RF) signals on a chip, where the RF signals comprising a desired signal and at least one crosstalk signal. The received RF signals may be down-converted to baseband frequencies, and the down-converted signals are converted to digital signals. Crosstalk may be determined by estimating complex coupling coefficients between the received RF signals utilizing a de-correlation algorithm across a frequency bandwidth comprising the desired and crosstalk signals. The down-converted signals may be low-pass filtered and summed with an output signal from a cancellation filter. The complex coupling coefficients may be determined utilizing the de-correlation algorithm on the summed signals, and may be used to configure the cancellation filter.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: January 30, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Raja Pullela, Glenn Chang, Timothy Gallagher
  • Patent number: 9793915
    Abstract: Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: October 17, 2017
    Assignee: MaxLinear, Inc.
    Inventors: Raja Pullela, Curtis Ling
  • Publication number: 20170288908
    Abstract: Methods and systems are provided for band translation with protection. A signal processing circuitry (chip) may be configured to receive and process a plurality of input signals, and generate one or more output signals based on the plurality of input signals. The processing may comprise determining when including a component of a first input signal into at least one output signal would have an effect on a component of a second input signal that is also to be included in the output signal, and applying, based on the effect, one or more adjustments to processing of one or both of the first signal and the second signal to mitigate the effect before generating the output signal. In this regard, applying the one or more adjustments may comprise applying one or both of filtering and spectral inversion to one or both of the first signal and the second signal.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 5, 2017
    Inventors: Glenn Chang, Raja Pullela, Sridhar Ramesh
  • Patent number: 9768796
    Abstract: Method and systems are provided for controlling adjustments of reception functions. Communication links may be setup between a transmitter and a receiver along with sideband control channels. Conditions and/or parameters, affecting estimated performance of reception, via the communication links, at the receiver, may then be monitored at the transmit-side, and information relating to the monitored conditions may then be communicated, via the sideband control channels, to enable adjusting reception related functions at the receiver. The reception related functions comprise analog-to-digital conversion, which may be configured to function in an interleaved manner.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: September 19, 2017
    Assignee: MAXLINEAR, INC.
    Inventors: Raja Pullela, Curtis Ling
  • Publication number: 20170264325
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Application
    Filed: May 31, 2017
    Publication date: September 14, 2017
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi
  • Patent number: 9762189
    Abstract: Systems and methods are provided for dynamically biasing power amplifiers. In particular, dynamic biasing of a power amplifier may be controlled, with the controlling comprising receiving an input signal that is to be amplified; processing the input signal; generating based on said processing of the input signal input signal, a plurality of control signals comprising at least one biasing control signal; and applying the plurality of control signals to one or more control elements that are used in driving and/or control of the power amplifier. The one or more control elements may comprise at least one biasing component that adjusts biasing applied to power amplifier.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: September 12, 2017
    Assignee: MAXLINEAR, INC.
    Inventors: Rahul Bhatia, Timothy Gallagher, Raja Pullela, Sridhar Ramesh
  • Patent number: 9755728
    Abstract: Methods and systems are provided for guard band detection and/or frequency offset detection. For example, a signal processing circuit may be operable to determine, for each of a plurality of downconverted signals, one or more frequency offsets that are associated with one or more corresponding local oscillators (LOs) used in obtaining the plurality of downconverted signals; and relating to the determined frequency offsets may be generated for the plurality of downconverted signals. The signal processing circuit may perform, based on the generated information, one or both of a band stacking operation and a channel stacking operation so as to prevent channels/bands being stacked on each other or being overlapped.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: September 5, 2017
    Assignee: MAXLINEAR, INC.
    Inventors: Raja Pullela, Glenn Chang, Sridhar Ramesh
  • Publication number: 20170214421
    Abstract: Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a receiver with a low-noise amplifier (LNA) with first and second input terminals and differential output terminals; a low pass filter operably coupled to the LNA; a high pass filter operably coupled to the second input terminal of the LNA; and a signal source input coupled to the low pass filter and the high pass filter. The LNA may be operable to receive signals in a pass band of the high pass filter and a pass band of the low pass filter. The receiver may be operable to amplify input signals in the pass band of a first filter but not signals in the pass band of the second filter by operably coupling the second to ground.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Raja Pullela, Wenjian Chen, Vamsi Paidi
  • Patent number: 9685983
    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 20, 2017
    Assignee: Maxlinear, Inc.
    Inventors: Subramanian Anantharaman Chandrasekarapuram, Anand Anandakumar, Stephane Laurent-Michel, Sheng Ye, Raja Pullela, Glenn Chang, Vamsi Paidi
  • Patent number: 9635310
    Abstract: Methods and systems are provided for band translation with protection. A signal processing circuitry (chip) may be configured to handle a plurality of signals, comprising at least a first signal corresponding to internal communication within an in-premises network and at least a second signal originating from a source external to the in-premises network; and to process on-chip the plurality of input signals, to generate one or more output signals. In this regard, at least one output signal may comprise components corresponding to the first signal and the second signal; and the processing may be configured to mitigate on-chip, during generating of the one or more outputs, at least one effect of including in the at least one output signal a first component corresponding to one of the first signal and the second signal on a second component corresponding to the other one of the first signal and the second signal.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: April 25, 2017
    Assignee: MAXLINEAR, INC.
    Inventors: Glenn Chang, Raja Pullela, Sridhar Ramesh
  • Patent number: 9621117
    Abstract: Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a receiver with a low-noise amplifier (LNA) with differential output terminals; a low pass filter operably coupled to the LNA; a high pass filter operably coupled to the second input terminal of the LNA; and a signal source input coupled to the low pass filter and the high pass filter. The LNA may be operable to receive signals in a pass band of the high pass filter and a pass band of the low pass filter. The receiver may be operable to amplify input signals in the pass band of a first filter but not signals in the pass band of the second filter by operably coupling the second to ground.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 11, 2017
    Assignee: MaxLinear, Inc.
    Inventors: Raja Pullela, Wenjian Chen, Vamsi Paidi