Patents by Inventor Rajasekhar Venigalla

Rajasekhar Venigalla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180323194
    Abstract: A method of forming a semiconductor structure includes forming a fin cut mask over a region in a fin field-effect transistor (finFET) structure. The finFET structure includes one or more fins and one or more gates and source/drain regions formed over the one or more fins in active regions of the finFET structure. The method also includes performing a fin cut by removing a portion of at least one fin. The portion of the at least one fin is determined by an exposed area of the fin cut mask. The exposed area of the fin cut mask includes at least a portion of the at least one fin between a first dummy gate and a second dummy gate formed over the at least one fin. The method further includes removing the fin cut mask and depositing an oxide to replace the portion of the at least one fin removed during the fin cut.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 8, 2018
    Inventors: Andrew M. Greene, Dechao Guo, Ravikumar Ramachandran, Rajasekhar Venigalla
  • Patent number: 10109535
    Abstract: A method of fabricating a vertical field effect transistor comprising that includes forming openings through a spacer material to provide fin structure openings to a first semiconductor material, and forming an inner spacer liner on sidewalls of the fin structure openings. A channel semiconductor material is epitaxially formed on a surface of the first semiconductor material filling at least a portion of the fin structure openings. The spacer material is recessed with an etch that is selective to the inner spacer liner to form a first spacer. The inner spacer liner is removed selectively to the channel semiconductor material. A gate structure on the channel semiconductor material, and a second semiconductor material is formed in contact with the channel semiconductor material.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla
  • Patent number: 10096607
    Abstract: A structure comprises a first channel region forming an n-channel device; a second channel region forming a p-channel device, the p-channel device being stacked with the n-channel device in a vertical orientation; a gate positioned around the stacked n-channel device and p-channel device; and at least one source region and at least one drain region extending from each of the n-channel device and the p-channel device. Each of the at least one source region and the at least one drain region within the stacked n-channel device and p-channel device are independently contacted.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: October 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Michael A. Guillorn, Robert R. Robison, Reinaldo Vega, Rajasekhar Venigalla
  • Patent number: 10083961
    Abstract: A method of forming a power rail to semiconductor devices comprising removing a portion of the gate structure forming a gate cut trench separating a first active region of fin structures from a second active region of fin structures. A conformal etch stop layer is formed in the gate cut trench. A fill material is formed on the conformal etch stop layer filling at least a portion of the gate cut trench. The fill material has a composition that is etched selectively to the conformal etch stop layer. A power rail is formed in the gate cut trench. The conformal etch stop layer obstructs lateral etching during forming the power rail to substantially eliminate power rail to gate structure shorting.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Andrew M. Greene, Rajasekhar Venigalla
  • Publication number: 20180269305
    Abstract: An additive core subtractive liner method is described for forming electrically conductive contacts. The method can include forming a first trench in an first dielectric layer to expose a first portion of a metal liner, and filling said first trench with a second dielectric layer. A metal cut trench is formed in the second dielectric layer. A portion of the metal liner exposed by the metal cut trench is removed with a subtractive method.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventors: Ruqiang Bao, Kisup Chung, Andrew M. Greene, Sivananda K. Kanakasabapathy, David L. Rath, Indira P.V. Seshadri, Rajasekhar Venigalla
  • Publication number: 20180269306
    Abstract: An additive core subtractive liner method is described for forming electrically conductive contacts. The method can include forming a first trench in an first dielectric layer to expose a first portion of a metal liner, and filling said first trench with a second dielectric layer. A metal cut trench is formed in the second dielectric layer. A portion of the metal liner exposed by the metal cut trench is removed with a subtractive method.
    Type: Application
    Filed: December 5, 2017
    Publication date: September 20, 2018
    Inventors: Ruqiang Bao, Kisup Chung, Andrew M. Greene, Sivananda K. Kanakasabapathy, David L. Rath, Indira P.V. Seshadri, Rajasekhar Venigalla
  • Publication number: 20180261597
    Abstract: A method for fabricating a semiconductor device includes accessing source/drain regions (S/D) in an n-type field effect transistor (NFET) region and in a p-type field effect transistor (PFET) region. First alloy elements are implanted in the S/D regions in the NFET region, and second alloy elements are implanted in the PFET region with the NFET region blocked. The first and second alloy elements form respective amorphized layers on the S/D regions in respective NFET and PFET regions. The amorphized layers are recrystallized to form metastable recrystallized interfaces using an epitaxy process wherein the metastable recrystallized interfaces formed in respective NFET and PFET regions exceed solubility of the first and second alloy elements in respective materials of the S/D regions in the NFET and PFET regions. Contacts to the metastable recrystallized layers of the S/D regions in the NFET and PFET regions are concurrently formed.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 13, 2018
    Inventors: Praneet Adusumilli, Oleg Gluschenkov, Dechao Guo, Zuoguang Liu, Rajasekhar Venigalla, Tenko Yamashita
  • Publication number: 20180261598
    Abstract: A method for fabricating a semiconductor device includes accessing source/drain regions (S/D) in an n-type field effect transistor (NFET) region and in a p-type field effect transistor (PFET) region. First alloy elements are implanted in the S/D regions in the NFET region, and second alloy elements are implanted in the PFET region with the NFET region blocked. The first and second alloy elements form respective amorphized layers on the S/D regions in respective NFET and PFET regions. The amorphized layers are recrystallized to form metastable recrystallized interfaces using an epitaxy process wherein the metastable recrystallized interfaces formed in respective NFET and PFET regions exceed solubility of the first and second alloy elements in respective materials of the S/D regions in the NFET and PFET regions. Contacts to the metastable recrystallized layers of the S/D regions in the NFET and PFET regions are concurrently formed.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 13, 2018
    Inventors: Praneet Adusumilli, Oleg Gluschenkov, Dechao Guo, Zuoguang Liu, Rajasekhar Venigalla, Tenko Yamashita
  • Patent number: 10068991
    Abstract: Embodiments are directed to a method and resulting structures for smoothing the sidewall roughness of a post-etched film. A sacrificial layer is formed on a substrate. A patterned mask is formed by removing portions of the sacrificial layer to expose a surface of the substrate. The sidewalls of the patterned mask are smoothed and a target layer is formed over the patterned mask and the substrate. Portions of the target layer are removed to expose a surface of the patterned mask and the patterned mask is removed.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: September 4, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kafai Lai, Hari V. Mallela, Hiroyuki Miyazoe, Reinaldo A. Vega, Rajasekhar Venigalla
  • Publication number: 20180240894
    Abstract: Embodiments are directed to a method and resulting structures for smoothing the sidewall roughness of a post-etched film. A sacrificial layer is formed on a substrate. A patterned mask is formed by removing portions of the sacrificial layer to expose a surface of the substrate. The sidewalls of the patterned mask are smoothed and a target layer is formed over the patterned mask and the substrate. Portions of the target layer are removed to expose a surface of the patterned mask and the patterned mask is removed.
    Type: Application
    Filed: January 19, 2018
    Publication date: August 23, 2018
    Inventors: Kafai LAI, Hari V. MALLELA, Hiroyuki MIYAZOE, Reinaldo A. VEGA, Rajasekhar VENIGALLA
  • Publication number: 20180240892
    Abstract: Embodiments are directed to a method and resulting structures for smoothing the sidewall roughness of a post-etched film. A sacrificial layer is formed on a substrate. A patterned mask is formed by removing portions of the sacrificial layer to expose a surface of the substrate. The sidewalls of the patterned mask are smoothed and a target layer is formed over the patterned mask and the substrate. Portions of the target layer are removed to expose a surface of the patterned mask and the patterned mask is removed.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 23, 2018
    Inventors: Kafai Lai, Hari V. Mallela, Hiroyuki Miyazoe, Reinaldo A. Vega, Rajasekhar Venigalla
  • Publication number: 20180226494
    Abstract: A method of fabricating a vertical field effect transistor including forming a first recess in a substrate; epitaxially growing a first drain from the first bottom surface of the first recess; epitaxially growing a second drain from the second bottom surface of a second recess formed in the substrate; growing a channel material epitaxially on the first drain and the second drain; forming troughs in the channel material to form one or more fin channels on the first drain and one or more fin channels on the second drain, wherein the troughs over the first drain extend to the surface of the first drain, and the troughs over the second drain extend to the surface of the second drain; forming a gate structure on each of the one or more fin channels; and growing sources on each of the fin channels associated with the first and second drains.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Brent A. Anderson, Bruce B. Doris, Seong-Dong Kim, Rajasekhar Venigalla
  • Publication number: 20180226299
    Abstract: A dual layer shallow isolation trench region for semiconductor structures including field effect transistors (FETs) and methods for making the same. The first layer of the shallow trench isolation region includes a dielectric material disposed between adjacent FETs. The second layer is an etch resistant material disposed on the dielectric material and has an increased etch resistance relative to the dielectric material. The etch resistant material overlays the shallow trench region to provide the dual layer shallow trench isolation region, which permits self-alignment of contacts to the source and/or drain of FETs.
    Type: Application
    Filed: November 6, 2017
    Publication date: August 9, 2018
    Inventors: Andrew M. Greene, Ravikumar Ramachandran, Rajasekhar Venigalla
  • Publication number: 20180226298
    Abstract: A dual layer shallow isolation trench region for semiconductor structures including field effect transistors (FETs) and methods for making the same. The first layer of the shallow trench isolation region includes a dielectric material disposed between adjacent FETs. The second layer is an etch resistant material disposed on the dielectric material and has an increased etch resistance relative to the dielectric material. The etch resistant material overlays the shallow trench region to provide the dual layer shallow trench isolation region, which permits self-alignment of contacts to the source and/or drain of FETs.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 9, 2018
    Inventors: Andrew M. Greene, Ravikumar Ramachandran, Rajasekhar Venigalla
  • Publication number: 20180219083
    Abstract: A method of forming a nanosheet device, including forming a channel stack on a substrate, where the channel stack includes at least one nanosheet channel layer and at least one sacrificial release layer, forming a stack cover layer on at least a portion of the channel stack, forming a dummy gate on at least a portion of the stack cover layer, wherein at least a portion of the at least one nanosheet channel layer and at least one sacrificial release layer is exposed on opposite sides of the dummy gate, removing at least a portion of the at least one sacrificial release layer on each side of the dummy gate to form a sacrificial supporting rib, and forming an inner spacer layer on exposed portions of the at least one nanosheet channel layer and at least one sacrificial supporting rib.
    Type: Application
    Filed: October 30, 2017
    Publication date: August 2, 2018
    Inventors: Michael A. Guillorn, Terence B. Hook, Robert R. Robison, Reinaldo A. Vega, Rajasekhar Venigalla
  • Publication number: 20180219082
    Abstract: A method of forming a nanosheet device, including forming a channel stack on a substrate, where the channel stack includes at least one nanosheet channel layer and at least one sacrificial release layer, forming a stack cover layer on at least a portion of the channel stack, forming a dummy gate on at least a portion of the stack cover layer, wherein at least a portion of the at least one nanosheet channel layer and at least one sacrificial release layer is exposed on opposite sides of the dummy gate, removing at least a portion of the at least one sacrificial release layer on each side of the dummy gate to form a sacrificial supporting rib, and forming an inner spacer layer on exposed portions of the at least one nanosheet channel layer and at least one sacrificial supporting rib.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 2, 2018
    Inventors: Michael A. Guillorn, Terence B. Hook, Robert R. Robison, Reinaldo A. Vega, Rajasekhar Venigalla
  • Patent number: 9985115
    Abstract: A method of fabricating a vertical field effect transistor including forming a first recess in a substrate; epitaxially growing a first drain from the first bottom surface of the first recess; epitaxially growing a second drain from the second bottom surface of a second recess formed in the substrate; growing a channel material epitaxially on the first drain and the second drain; forming troughs in the channel material to form one or more fin channels on the first drain and one or more fin channels on the second drain, wherein the troughs over the first drain extend to the surface of the first drain, and the troughs over the second drain extend to the surface of the second drain; forming a gate structure on each of the one or more fin channels; and growing sources on each of the fin channels associated with the first and second drains.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Bruce B. Doris, Seong-Dong Kim, Rajasekhar Venigalla
  • Patent number: 9978750
    Abstract: A method for fabricating a semiconductor device includes accessing source/drain regions (S/D) in an n-type field effect transistor (NFET) region and in a p-type field effect transistor (PFET) region. First alloy elements are implanted in the S/D regions in the NFET region, and second alloy elements are implanted in the PFET region with the NFET region blocked. The first and second alloy elements form respective amorphized layers on the S/D regions in respective NFET and PFET regions. The amorphized layers are recrystallized to form metastable recrystallized interfaces using an epitaxy process wherein the metastable recrystallized interfaces formed in respective NFET and PFET regions exceed solubility of the first and second alloy elements in respective materials of the S/D regions in the NFET and PFET regions. Contacts to the metastable recrystallized layers of the S/D regions in the NFET and PFET regions are concurrently formed.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 22, 2018
    Assignee: International Business Machines Corporation
    Inventors: Praneet Adusumilli, Oleg Gluschenkov, Dechao Guo, Zuoguang Liu, Rajasekhar Venigalla, Tenko Yamashita
  • Publication number: 20180138091
    Abstract: A method of forming a variable spacer in a vertical transistor device includes forming a first source/drain of a first transistor on a substrate; forming a second source/drain of a second transistor on the substrate adjacent to the first source/drain, an isolation region arranged in the substrate between the first source/drain and the second source/drain; depositing a spacer material on the first source/drain; depositing the spacer material on the second source/drain; forming a first channel extending from the first source drain and through the spacer material; forming a second channel extending from the second source/drain and through the spacer material; wherein the spacer material on the first source/drain forms a first spacer and the spacer material on the second source/drain forms a second spacer, the first spacer being different in thickness than the second spacer.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 17, 2018
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla
  • Publication number: 20180108655
    Abstract: A method of forming a semiconductor structure includes forming a fin cut mask over a region in a fin field-effect transistor (finFET) structure. The finFET structure includes one or more fins and one or more gates and source/drain regions formed over the one or more fins in active regions of the finFET structure. The method also includes performing a fin cut by removing a portion of at least one fin. The portion of the at least one fin is determined by an exposed area of the fin cut mask. The exposed area of the fin cut mask includes at least a portion of the at least one fin between a first dummy gate and a second dummy gate formed over the at least one fin. The method further includes removing the fin cut mask and depositing an oxide to replace the portion of the at least one fin removed during the fin cut.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 19, 2018
    Inventors: Andrew M. Greene, Dechao Guo, Ravikumar Ramachandran, Rajasekhar Venigalla