Patents by Inventor Rajasekhar Venigalla

Rajasekhar Venigalla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9728640
    Abstract: A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: August 8, 2017
    Assignee: International Business Machines Corporation
    Inventors: Chia-Yu Chen, Bruce B. Doris, Hong He, Rajasekhar Venigalla
  • Publication number: 20170222021
    Abstract: A method of fabricating a vertical field effect transistor comprising that includes forming openings through a spacer material to provide fin structure openings to a first semiconductor material, and forming an inner spacer liner on sidewalls of the fin structure openings. A channel semiconductor material is epitaxially formed on a surface of the first semiconductor material filling at least a portion of the fin structure openings. The spacer material is recessed with an etch that is selective to the inner spacer liner to form a first spacer. The inner spacer liner is removed selectively to the channel semiconductor material. A gate structure on the channel semiconductor material, and a second semiconductor material is formed in contact with the channel semiconductor material.
    Type: Application
    Filed: November 8, 2016
    Publication date: August 3, 2017
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla
  • Patent number: 9721848
    Abstract: A semiconductor device includes a first fin and a second fin arranged on a substrate, a gate stack arranged over a channel region of the first fin, and spacers arranged along sidewalls of the gate stack. A cavity is arranged adjacent to a distal end of the gate stack. The cavity is defined by the substrate, a distal end of the second fin, and the spacers. A dielectric fill material is arranged in the cavity such that the dielectric fill material contacts the substrate, the distal end of the second fin, and the spacers.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 1, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Kangguo Cheng, Andrew M. Greene, Dechao Guo, Sivananda K. Kanakasabapathy, Gauri Karve, Balasubramanian S. Pranatharthiharan, Stuart A. Sieg, John R. Sporre, Gen Tsutsui, Rajasekhar Venigalla, Huimei Zhou
  • Patent number: 9698224
    Abstract: A method of forming a finFET device comprises forming a fin in a silicon layer of a substrate, forming a hardmask layer on a top surface of the fin, forming an insulating layer over the fin and the hardmask layer, removing a portion of the insulating layer to expose a portion of the hardmask layer, removing the exposed portion of the hardmask layer to form a cavity that exposes a portion of the silicon layer of the fin, epitaxially growing a silicon germanium (SiGe) material on exposed portions of the silicon layer of the fin in the cavity, and annealing the grown SiGe to drive germanium atoms into the silicon layer of the fin.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Rajasekhar Venigalla
  • Publication number: 20170179259
    Abstract: A method of fabricating a vertical field effect transistor including forming a first recess in a substrate; epitaxially growing a first drain from the first bottom surface of the first recess; epitaxially growing a second drain from the second bottom surface of a second recess formed in the substrate; growing a channel material epitaxially on the first drain and the second drain; forming troughs in the channel material to form one or more fin channels on the first drain and one or more fin channels on the second drain, wherein the troughs over the first drain extend to the surface of the first drain, and the troughs over the second drain extend to the surface of the second drain; forming a gate structure on each of the one or more fin channels; and growing sources on each of the fin channels associated with the first and second drains.
    Type: Application
    Filed: July 28, 2016
    Publication date: June 22, 2017
    Inventors: Brent A. Anderson, Bruce B. Doris, Seong-Dong Kim, Rajasekhar Venigalla
  • Publication number: 20170178974
    Abstract: A method of forming a variable spacer in a vertical transistor device includes forming a first source/drain of a first transistor on a substrate; forming a second source/drain of a second transistor on the substrate adjacent to the first source/drain, an isolation region arranged in the substrate between the first source/drain and the second source/drain; depositing a spacer material on the first source/drain; depositing the spacer material on the second source/drain; forming a first channel extending from the first source drain and through the spacer material; forming a second channel extending from the second source/drain and through the spacer material; wherein the spacer material on the first source/drain forms a first spacer and the spacer material on the second source/drain forms a second spacer, the first spacer being different in thickness than the second spacer.
    Type: Application
    Filed: May 6, 2016
    Publication date: June 22, 2017
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla
  • Publication number: 20170178959
    Abstract: A method of forming a variable spacer in a vertical transistor device includes forming a first source/drain of a first transistor on a substrate; forming a second source/drain of a second transistor on the substrate adjacent to the first source/drain, an isolation region arranged in the substrate between the first source/drain and the second source/drain; depositing a spacer material on the first source/drain; depositing the spacer material on the second source/drain; forming a first channel extending from the first source drain and through the spacer material; forming a second channel extending from the second source/drain and through the spacer material; wherein the spacer material on the first source/drain forms a first spacer and the spacer material on the second source/drain forms a second spacer, the first spacer being different in thickness than the second spacer.
    Type: Application
    Filed: July 5, 2016
    Publication date: June 22, 2017
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla
  • Publication number: 20170179303
    Abstract: A method of fabricating a vertical field effect transistor including forming a first recess in a substrate; epitaxially growing a first drain from the first bottom surface of the first recess; epitaxially growing a second drain from the second bottom surface of a second recess formed in the substrate; growing a channel material epitaxially on the first drain and the second drain; forming troughs in the channel material to form one or more fin channels on the first drain and one or more fin channels on the second drain, wherein the troughs over the first drain extend to the surface of the first drain, and the troughs over the second drain extend to the surface of the second drain; forming a gate structure on each of the one or more fin channels; and growing sources on each of the fin channels associated with the first and second drains.
    Type: Application
    Filed: July 11, 2016
    Publication date: June 22, 2017
    Inventors: Brent A. Anderson, Bruce B. Doris, Seong-Dong Kim, Rajasekhar Venigalla
  • Publication number: 20170098665
    Abstract: A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 6, 2017
    Inventors: Chia-Yu Chen, Bruce B. Doris, Hong He, Rajasekhar Venigalla
  • Publication number: 20170092646
    Abstract: A semiconductor device that includes at least one germanium containing fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. The semiconductor device also includes at least one germanium free fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. A gate structure is present on a channel region of each of the germanium containing fin structure and the germanium free fin structure. N-type epitaxial semiconductor material having a square geometry present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium free fin structures. P-type epitaxial semiconductor material having a square geometry is present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium containing fin structures.
    Type: Application
    Filed: October 4, 2016
    Publication date: March 30, 2017
    Inventors: CHIA-YU CHEN, BRUCE B. DORIS, HONG HE, RAJASEKHAR VENIGALLA
  • Publication number: 20170092713
    Abstract: A semiconductor device that includes at least one germanium containing fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. The semiconductor device also includes at least one germanium free fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. A gate structure is present on a channel region of each of the germanium containing fin structure and the germanium free fin structure. N-type epitaxial semiconductor material having a square geometry present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium free fin structures. P-type epitaxial semiconductor material having a square geometry is present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium containing fin structures.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: CHIA-YU CHEN, BRUCE B. DORIS, HONG HE, RAJASEKHAR VENIGALLA
  • Patent number: 9601491
    Abstract: A method of fabricating a vertical field effect transistor comprising that includes forming openings through a spacer material to provide fin structure openings to a first semiconductor material, and forming an inner spacer liner on sidewalls of the fin structure openings. A channel semiconductor material is epitaxially formed on a surface of the first semiconductor material filling at least a portion of the fin structure openings. The spacer material is recessed with an etch that is selective to the inner spacer liner to form a first spacer. The inner spacer liner is removed selectively to the channel semiconductor material. A gate structure on the channel semiconductor material, and a second semiconductor material is formed in contact with the channel semiconductor material.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: March 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla
  • Patent number: 9601390
    Abstract: A method of forming a finFET device comprises forming a fin in a silicon layer of a substrate, forming a hardmask layer on a top surface of the fin, forming an insulating layer over the fin and the hardmask layer, removing a portion of the insulating layer to expose a portion of the hardmask layer, removing the exposed portion of the hardmask layer to form a cavity that exposes a portion of the silicon layer of the fin, epitaxially growing a silicon germanium (SiGe) material on exposed portions of the silicon layer of the fin in the cavity, and annealing the grown SiGe to drive germanium atoms into the silicon layer of the fin.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: March 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Rajasekhar Venigalla
  • Publication number: 20170047445
    Abstract: A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 16, 2017
    Inventors: Chia-Yu Chen, Bruce B. Doris, Hong He, Rajasekhar Venigalla
  • Publication number: 20170047331
    Abstract: A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
    Type: Application
    Filed: July 6, 2016
    Publication date: February 16, 2017
    Inventors: Chia-Yu Chen, Bruce B. Doris, Hong He, Rajasekhar Venigalla
  • Patent number: 9530700
    Abstract: A method of fabricating a vertical field effect transistor comprising that includes forming openings through a spacer material to provide fin structure openings to a first semiconductor material, and forming an inner spacer liner on sidewalls of the fin structure openings. A channel semiconductor material is epitaxially formed on a surface of the first semiconductor material filling at least a portion of the fin structure openings. The spacer material is recessed with an etch that is selective to the inner spacer liner to form a first spacer. The inner spacer liner is removed selectively to the channel semiconductor material. A gate structure on the channel semiconductor material, and a second semiconductor material is formed in contact with the channel semiconductor material.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: December 27, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla
  • Publication number: 20160372551
    Abstract: A method of forming a finFET device comprises forming a fin in a silicon layer of a substrate, forming a hardmask layer on a top surface of the fin, forming an insulating layer over the fin and the hardmask layer, removing a portion of the insulating layer to expose a portion of the hardmask layer, removing the exposed portion of the hardmask layer to form a cavity that exposes a portion of the silicon layer of the fin, epitaxially growing a silicon germanium (SiGe) material on exposed portions of the silicon layer of the fin in the cavity, and annealing the grown SiGe to drive germanium atoms into the silicon layer of the fin.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 22, 2016
    Inventors: Bruce B. Doris, Rajasekhar Venigalla
  • Publication number: 20160372384
    Abstract: A method of forming a finFET device comprises forming a fin in a silicon layer of a substrate, forming a hardmask layer on a top surface of the fin, forming an insulating layer over the fin and the hardmask layer, removing a portion of the insulating layer to expose a portion of the hardmask layer, removing the exposed portion of the hardmask layer to form a cavity that exposes a portion of the silicon layer of the fin, epitaxially growing a silicon germanium (SiGe) material on exposed portions of the silicon layer of the fin in the cavity, and annealing the grown SiGe to drive germanium atoms into the silicon layer of the fin.
    Type: Application
    Filed: December 4, 2015
    Publication date: December 22, 2016
    Inventors: Bruce B. Doris, Rajasekhar Venigalla
  • Patent number: 9466680
    Abstract: A multi-channel semiconductor device includes a first and second gate channels formed in a semiconductor substrate. The first gate channel has a first length and the second gate channel has a second length greater than the first length. A gate dielectric layer is formed in the first and second gate channels. A first plurality of work function metal layers is formed on the gate dielectric layer of the first gate channel. A second plurality of work function metal layers is formed on the gate dielectric layer of the second gate channel. A barrier layer is formed on each of the first and second plurality of work function metal layers, and the gate dielectric layer. The multi-channel semiconductor device further includes metal gate stacks formed on of the barrier layer such that the barrier layer is interposed between the metal gate stacks and the gate dielectric layer.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: October 11, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Su Chen Fan, Balasubramanian Pranatharthiharan, Rajasekhar Venigalla
  • Patent number: 9437503
    Abstract: A method of forming a variable spacer in a vertical transistor device includes forming a first source/drain of a first transistor on a substrate; forming a second source/drain of a second transistor on the substrate adjacent to the first source/drain, an isolation region arranged in the substrate between the first source/drain and the second source/drain; depositing a spacer material on the first source/drain; depositing the spacer material on the second source/drain; forming a first channel extending from the first source drain and through the spacer material; forming a second channel extending from the second source/drain and through the spacer material; wherein the spacer material on the first source/drain forms a first spacer and the spacer material on the second source/drain forms a second spacer, the first spacer being different in thickness than the second spacer.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 6, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hari V. Mallela, Reinaldo A. Vega, Rajasekhar Venigalla