Patents by Inventor Rajavelu Thinakaran

Rajavelu Thinakaran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949417
    Abstract: Trimming components within an oscillator comprising: a trim-capable current source, wherein the trim-capable current source comprises a trimmable resistor and a trimmable current component, a comparator comprising a first input terminal that couples to the trim-capable current source and the second input terminal that couples to a reference voltage source, a switch coupled to the first input terminal and the trim-capable current source, and a trim-capable capacitor coupled to the switch, wherein the switch is coupled between the trim-capable capacitor and the trim-capable current source.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: April 2, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aniruddha Roy, Nitin Agarwal, Rajavelu Thinakaran
  • Publication number: 20220302906
    Abstract: Trimming components within an oscillator comprising: a trim-capable current source, wherein the trim-capable current source comprises a trimmable resistor and a trimmable current component, a comparator comprising a first input terminal that couples to the trim-capable current source and the second input terminal that couples to a reference voltage source, a switch coupled to the first input terminal and the trim-capable current source, and a trim-capable capacitor coupled to the switch, wherein the switch is coupled between the trim-capable capacitor and the trim-capable current source.
    Type: Application
    Filed: June 10, 2022
    Publication date: September 22, 2022
    Inventors: Aniruddha ROY, Nitin AGARWAL, Rajavelu THINAKARAN
  • Patent number: 11387814
    Abstract: Trimming components within an oscillator comprising: a trim-capable current source, wherein the trim-capable current source comprises a trimmable resistor and a trimmable current component, a comparator comprising a first input terminal that couples to the trim-capable current source and the second input terminal that couples to a reference voltage source, a switch coupled to the first input terminal and the trim-capable current source, and a trim-capable capacitor coupled to the switch, wherein the switch is coupled between the trim-capable capacitor and the trim-capable current source.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 12, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aniruddha Roy, Nitin Agarwal, Rajavelu Thinakaran
  • Publication number: 20210203339
    Abstract: A system includes a multiplying digital-to-analog converter (MDAC). The system also includes an input-side component coupled to the MDAC and configured to provide a code to the MDAC. The system also includes a reference voltage source coupled to the MDAC and configured to provide a reference voltage to the MDAC. The MDAC comprises a nonlinear calibration circuit configured to adjust an output of the MDAC nonlinearly based on the code, the reference voltage, and an output of the nonlinear calibration circuit.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 1, 2021
    Inventor: Rajavelu THINAKARAN
  • Patent number: 11038517
    Abstract: A system includes a multiplying digital-to-analog converter (MDAC). The system also includes an input-side component coupled to the MDAC and configured to provide a code to the MDAC. The system also includes a reference voltage source coupled to the MDAC and configured to provide a reference voltage to the MDAC. The MDAC comprises a nonlinear calibration circuit configured to adjust an output of the MDAC nonlinearly based on the code, the reference voltage, and an output of the nonlinear calibration circuit.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: June 15, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Rajavelu Thinakaran
  • Patent number: 10951227
    Abstract: A multiplying digital to analog converter (MDAC) includes a first resistor configured to be selectively connected to a current output node based on a first bit of a first portion of an input digital code and a second resistor configured to be selectively connected to the current output node based on a second bit of the first portion of the input digital code. A resistance of the second resistor is a resistance of the first resistor scaled by a factor. The MDAC further includes a first capacitor configured to be selectively connected to the current output node based on the first bit of the first portion and a second capacitor configured to be selectively connected to the current output node based on the second bit of the first portion. A capacitance of the second capacitor is a capacitance of the first capacitor scaled by an inverse of the factor.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: March 16, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Rajavelu Thinakaran
  • Patent number: 10877503
    Abstract: At least some embodiments are directed to a system comprising a capacitor coupled to a voltage supply rail and configured to carry a capacitor current that comprises first and second parts. The capacitor current is an alternating current (AC). A first current mirror component may couple to the capacitor and to the voltage supply rail and is configured to carry the first part of the capacitor current. A second current mirror component couples to the voltage supply rail and is configured to carry the second part of the capacitor current. The second part of the capacitor current is proportionally related to the first part of the capacitor current. A circuit couples to the second current mirror component. The capacitor and the first and second current mirror components are configured to attenuate a common mode noise current flowing to the circuit.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: December 29, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Nitin Agarwal, Rajavelu Thinakaran, Sumit Dubey
  • Publication number: 20200395921
    Abstract: Trimming components within an oscillator comprising: a trim-capable current source, wherein the trim-capable current source comprises a trimmable resistor and a trimmable current component, a comparator comprising a first input terminal that couples to the trim-capable current source and the second input terminal that couples to a reference voltage source, a switch coupled to the first input terminal and the trim-capable current source, and a trim-capable capacitor coupled to the switch, wherein the switch is coupled between the trim-capable capacitor and the trim-capable current source.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Aniruddha ROY, Nitin AGARWAL, Rajavelu THINAKARAN
  • Patent number: 10763832
    Abstract: Trimming components within an oscillator comprising: a trim-capable current source, wherein the trim-capable current source comprises a trimmable resistor and a trimmable current component, a comparator comprising a first input terminal that couples to the trim-capable current source and the second input terminal that couples to a reference voltage source, a switch coupled to the first input terminal and the trim-capable current source, and a trim-capable capacitor coupled to the switch, wherein the switch is coupled between the trim-capable capacitor and the trim-capable current source.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 1, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aniruddha Roy, Nitin Agarwal, Rajavelu Thinakaran
  • Publication number: 20190361475
    Abstract: At least some embodiments are directed to a system comprising a capacitor coupled to a voltage supply rail and configured to carry a capacitor current that comprises first and second parts. The capacitor current is an alternating current (AC). A first current mirror component may couple to the capacitor and to the voltage supply rail and is configured to carry the first part of the capacitor current. A second current mirror component couples to the voltage supply rail and is configured to carry the second part of the capacitor current. The second part of the capacitor current is proportionally related to the first part of the capacitor current. A circuit couples to the second current mirror component. The capacitor and the first and second current mirror components are configured to attenuate a common mode noise current flowing to the circuit.
    Type: Application
    Filed: June 11, 2019
    Publication date: November 28, 2019
    Inventors: Nitin Agarwal, Rajavelu Thinakaran, Sumit Dubey
  • Publication number: 20190199330
    Abstract: Trimming components within an oscillator comprising: a trim-capable current source, wherein the trim-capable current source comprises a trimmable resistor and a trimmable current component, a comparator comprising a first input terminal that couples to the trim-capable current source and the second input terminal that couples to a reference voltage source, a switch coupled to the first input terminal and the trim-capable current source, and a trim-capable capacitor coupled to the switch, wherein the switch is coupled between the trim-capable capacitor and the trim-capable current source.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Aniruddha ROY, Nitin AGARWAL, Rajavelu THINAKARAN
  • Patent number: 10317925
    Abstract: At least some embodiments are directed to a system comprising a capacitor coupled to a voltage supply rail and configured to carry a capacitor current that comprises first and second parts. The capacitor current is an alternating current (AC). A first current mirror component may couple to the capacitor and to the voltage supply rail and is configured to carry the first part of the capacitor current. A second current mirror component couples to the voltage supply rail and is configured to carry the second part of the capacitor current. The second part of the capacitor current is proportionally related to the first part of the capacitor current. A circuit couples to the second current mirror component. The capacitor and the first and second current mirror components are configured to attenuate a common mode noise current flowing to the circuit.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 11, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nitin Agarwal, Rajavelu Thinakaran, Sumit Dubey
  • Publication number: 20180284832
    Abstract: At least some embodiments are directed to a system comprising a capacitor coupled to a voltage supply rail and configured to carry a capacitor current that comprises first and second parts. The capacitor current is an alternating current (AC). A first current mirror component may couple to the capacitor and to the voltage supply rail and is configured to carry the first part of the capacitor current. A second current mirror component couples to the voltage supply rail and is configured to carry the second part of the capacitor current. The second part of the capacitor current is proportionally related to the first part of the capacitor current. A circuit couples to the second current mirror component. The capacitor and the first and second current mirror components are configured to attenuate a common mode noise current flowing to the circuit.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Nitin AGARWAL, Rajavelu THINAKARAN, Sumit DUBEY
  • Patent number: 9866237
    Abstract: Disclosed examples include switched capacitor integrator circuits including an amplifier, a feedback capacitor, a sampling capacitor, a loading capacitor and a switching circuit, along with a controller that operates the switching circuit to sample an input signal to the sampling capacitor during a sample portion of a given sample and hold cycle, to couple the sampling capacitor to an amplifier input during a first hold portion of each sample and hold cycle, and to couple the sampling capacitor and the loading capacitor to the amplifier input in a second hold portion of each sample and hold cycle to reduce the bandwidth and power consumption by the integrator circuit.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rajavelu Thinakaran, Sumit Dubey
  • Patent number: 9252792
    Abstract: A tunable DCO (digitally controlled oscillator), for example, includes a clock generator that is arranged to provide a converter clock signal for driving a frequency-to-voltage (F2V) converter. The F2V converter, for example, includes a frequency target control input for selecting an operational frequency and in response generates a frequency control signal using a DAC (digital-to-analog converter). The example F2V converter is arranged using a split capacitor DAC to provide a linear voltage response over a range of trim codes. The clock generator is arranged to generate the converter clock signal in response to the frequency control signal.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: February 2, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Rajavelu Thinakaran
  • Publication number: 20150326231
    Abstract: A tunable DCO (digitally controlled oscillator), for example, includes a clock generator that is arranged to provide a converter clock signal for driving a frequency-to-voltage (F2V) converter. The F2V converter, for example, includes a frequency target control input for selecting an operational frequency and in response generates a frequency control signal using a DAC (digital-to-analog converter). The example F2V converter is arranged using a split capacitor DAC to provide a linear voltage response over a range of trim codes. The clock generator is arranged to generate the converter clock signal in response to the frequency control signal.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 12, 2015
    Applicant: Texas Instruments Incorporated
    Inventor: Rajavelu Thinakaran
  • Patent number: 9178499
    Abstract: A low-power offset-stored CMOS latch includes, for example, a common current source that is arranged to provide a predetermined bias current for an offset storage phase and enable transistors that are arranged to couple a resolution bias current during a resolution period to a respective input pair device. The low-power offset-stored CMOS latch optionally includes current scaling to provide a resolution bias current that is larger than the predetermined bias current of the offset storage phase.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: November 3, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mahadevan Venkiteswaran, Rajavelu Thinakaran
  • Publication number: 20150244355
    Abstract: A low-power offset-stored CMOS latch includes, for example, a common current source that is arranged to provide a predetermined bias current for an offset storage phase and enable transistors that are arranged to couple a resolution bias current during a resolution period to a respective input pair device. The low-power offset-stored CMOS latch optionally includes current scaling to provide a resolution bias current that is larger than the predetermined bias current of the offset storage phase.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 27, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Mahadevan Venkiteswaran, Rajavelu Thinakaran
  • Publication number: 20140184310
    Abstract: A sampled CMOS switch includes first and second NMOS devices in series between input and output nodes. The first and second NMOS devices are activated by a sample signal. A pair of low-voltage DEPMOS devices is connected in a “T” configuration between the input and output nodes. The low-voltage DEPMOS devices are activated by an inverted sample signal. A feedback circuit includes the DEPMOS devices together with a third high-voltage NMOS device and a current source. The third NMOS device is controlled by a signal on the input node. A switch switchably connects an analog voltage source to a source of the third NMOS device and gates of the DEPMOS devices in accordance with a phase of an inverted sample signal. The construction of the sampled CMOS switch enables the protection of the gate oxide insulation of the low-voltage DEPMOS transistors from high voltage damage.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Vineet Mishra, Rajavelu Thinakaran
  • Patent number: 8766700
    Abstract: A sampled CMOS switch includes first and second NMOS devices in series between input and output nodes. The first and second NMOS devices are activated by a sample signal. A pair of low-voltage DEPMOS devices is connected in a “T” configuration between the input and output nodes. The low-voltage DEPMOS devices are activated by an inverted sample signal. A feedback circuit includes the DEPMOS devices together with a third high-voltage NMOS device and a current source. The third NMOS device is controlled by a signal on the input node. A switch switchably connects an analog voltage source to a source of the third NMOS device and gates of the DEPMOS devices in accordance with a phase of an inverted sample signal. The construction of the sampled CMOS switch enables the protection of the gate oxide insulation of the low-voltage DEPMOS transistors from high voltage damage.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Vineet Mishra, Rajavelu Thinakaran