Patents by Inventor Rajeev Bajaj

Rajeev Bajaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210379726
    Abstract: A polishing pad for a semiconductor fabrication operation includes a polishing region and a window region, wherein both regions are made of an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Rajeev Bajaj, Daniel Redfield, Mayu Felicia Yamamura, Yingdong Luo, Nag B. Patibandla
  • Publication number: 20210347005
    Abstract: Embodiments of the present disclosure provide for polishing pads that include at least one endpoint detection (EPD) window disposed through the polishing pad material and methods of forming thereof. In one embodiment, a method of forming a polishing pad includes forming a first layer of the polishing pad by dispensing a first precursor composition and a window precursor composition, the first layer comprising at least portions of each of a first polishing pad element and a window feature, and partially curing the dispensed first precursor composition, and the dispensed window precursor composition disposed within the first layer.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 11, 2021
    Inventors: Boyi FU, Sivapackia GANAPATHIAPPAN, Daniel REDFIELD, Rajeev BAJAJ, Ashwin CHOCKALINGAM, Dominic J. BENVEGNU, Mario Dagio CORNEJO, Mayu YAMAMURA, Nag B. PATIBANDLA, Ankit VORA
  • Patent number: 11154961
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes receiving data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection. The desired shape defines a profile including a polishing surface and one or more grooves on the polishing pad. Data indicative of a modified pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the modified pattern.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: October 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng
  • Publication number: 20210274926
    Abstract: Embodiments described herein generally relate to a brush, a method of forming a brush, and a structure embodied in a machine readable medium used in a design process are provided. The brush includes a body and a channel configured to deliver a cleaning liquid through holes in the body. The method forms the brush using 3D printing. The structure provides details for making the brush. The disclosure herein allows a method of forming a brush that does not require the removal of active porogen.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 9, 2021
    Inventor: Rajeev BAJAJ
  • Patent number: 11072050
    Abstract: Embodiments of the present disclosure provide for polishing pads that include at least one endpoint detection (EPD) window disposed through the polishing pad material, and methods of forming thereof. In one embodiment a method of forming a polishing pad includes forming a first layer of the polishing pad by dispensing a first precursor composition and a window precursor composition, the first layer comprising at least portions of each of a first polishing pad element and a window feature, and partially curing the dispensed first precursor composition and the dispensed window precursor composition disposed within the first layer.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Boyi Fu, Sivapackia Ganapathiappan, Daniel Redfield, Rajeev Bajaj, Ashwin Chockalingam, Dominic J. Benvegnu, Mario Dagio Cornejo, Mayu Yamamura, Nag B. Patibandla, Ankit Vora
  • Publication number: 20210205951
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Publication number: 20210187693
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Application
    Filed: September 29, 2020
    Publication date: June 24, 2021
    Inventors: Aniruddh Jagdish KHANNA, Jason G. FUNG, Puneet Narendra JAWALI, Rajeev BAJAJ, Adam Wade MANZONIE, Nandan BARADANAHALLI KENCHAPPA, Veera Raghava Reddy KAKIREDDY, Joonho AN, Jaeseok KIM, Mayu YAMAMURA
  • Publication number: 20210107116
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 15, 2021
    Inventors: Rajeev BAJAJ, Daniel REDFIELD, Mahendra C. ORILALL, Boyi FU, Aniruddh Jagdish KHANNA, Jason G. FUNG, Ashwin CHOCKALINGAM, Mayu YAMAMURA, Veera Raghava Reddy KAKIREDDY, Gregory E. MENK, Nag B. PATIBANDLA
  • Patent number: 10953515
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: March 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Daniel Redfield, Rajeev Bajaj, Mahendra C. Orilall, Hou T. Ng, Jason G. Fung, Mayu Yamamura
  • Publication number: 20210069856
    Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
  • Publication number: 20210054222
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 25, 2021
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Publication number: 20210046603
    Abstract: A chemical mechanical polishing system includes a platen to support a polishing pad having a polishing surface, a source of a heating fluid, a reservoir to hold a polishing liquid, and a dispenser having one or more apertures suspended over the platen to direct the polishing liquid onto the polishing surface, wherein the source of the heating fluid is coupled to the dispenser and configured to deliver the heating fluid into the polishing liquid to heat the polishing liquid after the polishing liquid leaves the reservoir and before the polishing liquid is dispensed onto the polishing surface.
    Type: Application
    Filed: March 26, 2020
    Publication date: February 18, 2021
    Inventors: Haosheng Wu, Hari Soundararajan, Jianshe Tang, Shou-Sung Chang, Brian J. Brown, Yen-Chu Yang, You Wang, Rajeev Bajaj
  • Publication number: 20210046602
    Abstract: A chemical mechanical polishing system includes a platen to support a polishing pad having a polishing surface, a source of coolant, a dispenser having one or more apertures suspended over the platen to direct coolant from the source of coolant onto the polishing surface of the polishing pad; and a controller coupled to the source of coolant and configured to cause the source of coolant to deliver the coolant through the nozzles onto the polishing surface during a selected step of a polishing operation.
    Type: Application
    Filed: March 26, 2020
    Publication date: February 18, 2021
    Inventors: Haosheng Wu, Hari Soundararajan, Jianshe Tang, Shou-Sung Chang, Brian J. Brown, Yen-Chu Yang, You Wang, Rajeev Bajaj
  • Patent number: 10919123
    Abstract: Embodiments described herein relate to methods of detecting a polishing endpoint using one or more sensors embedded in the polishing material of a polishing pad, the polishing pads, and methods of forming the polishing pads. In one embodiment, a method of polishing a substrate includes urging a to be polished surface of a substrate against a polishing surface of a polishing pad, the polishing pad having one or more sensors embedded in the polishing pad material thereof, wherein the polishing pad is mounted on a polishing platen of a polishing system, detecting a force exerted against a polishing surface of the polishing pad using the one or more sensors, converting the detected force into signal information, wirelessly communicating the signal information received from the one or more sensors to one or more interrogators disposed in the polishing platen, and changing one or more polishing conditions based on the signal information.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Venkat Hariharan, Rajeev Bajaj, Daniel Redfield
  • Patent number: 10875153
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: December 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Ashwin Chockalingam
  • Patent number: 10875145
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: December 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Patent number: 10843306
    Abstract: A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: November 24, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Rajeev Bajaj, Barry Lee Chin, Terrance Y. Lee
  • Patent number: 10821573
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Publication number: 20200325353
    Abstract: Polishing articles and methods of manufacturing polishing articles used in polishing processes and cleaning processes are provided. More particularly, implementations disclosed herein relate to composite polishing articles having tunable properties such as hydrophilicity and zeta potential. 3D printed chemical-mechanical planarization (CMP) pads composed of UV curable acrylic chemistry are generally hydrophobic in nature. Such hydrophobic behavior affects the wetting properties with abrasive-based polishing slurries such as ceria-base slurries. However, in order to increase the planarization and removal rate while decreasing defects, hydrophilic pads are preferred. In addition, it is desirable that the zeta potential (Zp) of the pads be tunable over a wide range of conditions at different pH values. Implementations of the present disclosure include methods for increasing the hydrophilicity and tuning the Zp of the pads with anionic additives and pads produced using these methods.
    Type: Application
    Filed: October 30, 2019
    Publication date: October 15, 2020
    Inventors: Uma SRIDHAR, Sivapackia GANAPATHIAPPAN, Ashwin CHOCKALINGAM, Yingdong LUO, Daniel REDFIELD, Rajeev BAJAJ, Nag B. PATIBANDLA, Hou T. NG, Sudhakar MADHUSOODHANAN
  • Patent number: 10800000
    Abstract: The present disclosure relates generally to a polishing article, and apparatus and methods of chemical mechanical polishing substrates using the polishing article. In some embodiments, the polishing article, such as a polishing pad, includes multiple layers in which one or more layers (i.e., at least the top layer) includes a plurality of nano-fibers that a positioned to contact a substrate during a polishing process. In one embodiment, a polishing article comprises a layer having a thickness less than about 0.032 inches, and the layer comprising fibers having a diameter of about 10 nanometers to about 200 micro meters.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 13, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Robert D. Tolles, Mahendra C. Orilall, Fred C. Redeker, Rajeev Bajaj