Patents by Inventor Rajendra D. Pendse

Rajendra D. Pendse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120319273
    Abstract: A solder mask for flip chip interconnection has a common opening that spans a plurality of circuit elements. The solder mask allows confinement of the solder during the re-melt stage of interconnection, yet it is within common design rules for solder mask patterning. Also, a substrate for flip chip interconnection includes a substrate having the common opening that spans a plurality of circuit elements. Also, a flip chip package includes a substrate having a common opening that spans a plurality of circuit elements.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Applicant: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8318537
    Abstract: A flip chip interconnect of a die on a substrate is made by mating the interconnect bump onto a narrow interconnect pad on a lead or trace, rather than onto a capture pad. The width of the narrow interconnect pad is less than a base diameter of bumps on the die to be attached. Also, a flip chip package includes a die having solder bumps attached to interconnect pads in an active surface, and a substrate having narrow interconnect pads on electrically conductive traces in a die attach surface, in which the bumps are mated onto the narrow pads on the traces.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: November 27, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8304919
    Abstract: A method of manufacture of an integrated circuit system includes: providing a substrate having a transistor and a metallization layer; forming a metal pad in direct contact with the metallization layer of the substrate; forming a passivation layer in direct contact with the metal pad and covering the substrate; forming a routing trace above the passivation layer in direct contact with the metal pad, and the routing trace is substantially larger than the metal pad, and the routing trace is not electrically insulated by a subsequent layer; and forming a bump connected to the metal pad with the routing trace.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 6, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Rajendra D. Pendse, Chien Ouyang, Mukul Joshi
  • Publication number: 20120273943
    Abstract: A flip chip interconnect has a tapering interconnect structure, and the area of contact of the interconnect structure with the site on the substrate metallization is less than the area of contact of the interconnect structure with the die pad. A solder mask has an opening over the interconnect site, and the solder mask makes contact with the interconnect structure at the margin of the opening. The flip chip interconnect is provided with an underfill. During the underfill process, the contact or near proximity of the solder mask with the interconnect structure interferes with flow of the underfill material toward the substrate adjacent the site, resulting in formation of a void left unfilled by the underfill, adjacent the contact of the interconnect structure with the site on the substrate metallization. The void can help provide relief from strain induced by changes in temperature of the system.
    Type: Application
    Filed: June 21, 2012
    Publication date: November 1, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Rajendra D. Pendse, KyungOe Kim, TaeWoo Kang
  • Patent number: 8278144
    Abstract: A solder mask for flip chip interconnection has a common opening that spans a plurality of circuit elements. The solder mask allows confinement of the solder during the remelt stage of interconnection, yet it is within common design rules for solder mask patterning. Also, a substrate for flip chip interconnection includes a substrate having the common opening that spans a plurality of circuit elements. Also, a flip chip package includes a substrate having a common opening that spans a plurality of circuit elements.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 2, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120241984
    Abstract: A semiconductor device has a semiconductor die with a die pad layout. Signal pads in the die pad layout are located primarily near a perimeter of the semiconductor die, and power pads and ground pads are located primarily inboard from the signal pads. The signal pads are arranged in a peripheral row or in a peripheral array generally parallel to an edge of the semiconductor die. Bumps are formed over the signal pads, power pads, and ground pads. The bumps can have a fusible portion and non-fusible portion. Conductive traces with interconnect sites are formed over a substrate. The bumps are wider than the interconnect sites. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surfaces of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate.
    Type: Application
    Filed: December 3, 2010
    Publication date: September 27, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120241946
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over contact pads on a surface of the semiconductor die. The bumps can have a fusible portion and non-fusible portion. A plurality of conductive traces is formed over a substrate with interconnect sites having a width greater than 20% and less than 80% of a width of a contact interface between the bumps and contact pads. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate. The conductive traces have a pitch as determined by minimum spacing between adjacent conductive traces that can be placed on the substrate and the width of the interconnect site provides a routing density equal to the pitch of the conductive traces.
    Type: Application
    Filed: December 6, 2010
    Publication date: September 27, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120241945
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps or interconnect structures formed over an active surface of the die. The bumps can have a fusible portion and non-fusible portion, such as a conductive pillar and bump formed over the conductive pillar. A plurality of conductive traces with interconnect sites is formed over a substrate. The bumps are wider than the interconnect sites. A masking layer is formed over an area of the substrate away from the interconnect sites. The bumps are bonded to the interconnect sites under pressure or reflow temperature so that the bumps cover a top surface and side surfaces of the interconnect sites. An encapsulant is deposited around the bumps between the die and substrate. The masking layer can form a dam to block the encapsulant from extending beyond the semiconductor die. Asperities can be formed over the interconnect sites or bumps.
    Type: Application
    Filed: November 16, 2010
    Publication date: September 27, 2012
    Applicant: STATS ChipPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Patent number: 8269356
    Abstract: A semiconductor package has a semiconductor die disposed on a substrate. A bond wire is connected between a first bonding site on the semiconductor die and a second bonding site on the substrate. The first bonding site is a die bond pad; the second bonding site is a stitch bond. The second bonding site has a bond finger formed on the substrate, a conductive layer in direct physical contact with the bond finger, and a bond stud coupled to the bond wire and in direct physical contact with the conductive layer to conduct an electrical signal from the semiconductor die to the bond finger. The bond finger is made of copper. The conductive layer is made of copper or gold. The bond stud is made of gold and overlies a side portion and top portion of the copper layer.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 18, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: Rajendra D. Pendse, Byung Joon Han, Hun Teak Lee
  • Publication number: 20120228766
    Abstract: A semiconductor device has a semiconductor die with die bump pads and substrate with trace lines having integrated bump pads. A solder mask patch is formed interstitially between the die bump pads or integrated bump pads. The solder mask patch contains non-wettable material. Conductive bump material is deposited over the integrated bump pads or die bump pads. The semiconductor die is mounted over the substrate so that the conductive bump material is disposed between the die bump pads and integrated bump pads. The bump material is reflowed without a solder mask around the integrated bump pads to form an interconnect between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within a footprint of the die bump pads or integrated bump pads during reflow. The interconnect can have a non-fusible base and fusible cap.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 13, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120223428
    Abstract: A semiconductor device has a semiconductor die and substrate with a plurality of stud bumps formed over the semiconductor die or substrate. The stud bumps include a base portion and stem portion extending from the base portion. The stud bumps include a non-fusible material or fusible material. The semiconductor die is mounted to the substrate with the stud bumps electrically connecting the semiconductor die to the substrate. A width of the base portion is greater than a mating conductive trace formed on the substrate. Alternatively, a vertical interconnect structure, such as a conductive column, is formed over the semiconductor die or substrate. The conductive column can have a tapered sidewall or oval cross sectional area. An underfill material is deposited between the semiconductor die and substrate. The semiconductor die includes a flexible property. The vertical interconnect structure includes a flexible property. The substrate includes a flexible property.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 6, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120217635
    Abstract: A method of making a semiconductor device includes providing a substrate and forming a conductive layer on the substrate. The conductive layer includes a first metal. A semiconductor die is provided. A bump is formed on the semiconductor die. The bump includes a second metal. The semiconductor die is positioned proximate to the substrate to contact the bump to the conductive layer and form a bonding interface. The bump and the conductive layer are metallurgically reacted at a melting point of the first metal to dissolve a portion of the second metal from an end of the bump. The bonding interface is heated to the melting point of the first metal for a time sufficient to melt a portion of the first metal from the conductive layer. A width of the conductive layer is no greater than a width of the bump.
    Type: Application
    Filed: September 26, 2011
    Publication date: August 30, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Nazir Ahmad, Young-Do Kwon, Samuel Tam, Kyung-Moon Kim, Rajendra D. Pendse
  • Publication number: 20120211880
    Abstract: A flip chip interconnect of a die on a substrate is made by mating the interconnect bump onto a narrow interconnect pad on a lead or trace, rather than onto a capture pad. The width of the narrow interconnect pad is less than a base diameter of bumps on the die to be attached. Also, a flip chip package includes a die having solder bumps attached to interconnect pads in an active surface, and a substrate having narrow interconnect pads on electrically conductive traces in a die attach surface, in which the bumps are mated onto the narrow pads on the traces.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 23, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120211882
    Abstract: A semiconductor device has a semiconductor die having a plurality of die bump pad and substrate having a plurality of conductive trace with an interconnect site. A solder mask patch is formed interstitially between the die bump pads or interconnect sites. A conductive bump material is deposited on the interconnect sites or die bump pads. The semiconductor die is mounted to the substrate so that the conductive bump material is disposed between the die bump pads and interconnect sites. The conductive bump material is reflowed without a solder mask around the die bump pad or interconnect site to form an interconnect structure between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within the die bump pad or interconnect site. The interconnect structure can include a fusible portion and non-fusible portion. An encapsulant is deposited between the semiconductor die and substrate.
    Type: Application
    Filed: December 9, 2010
    Publication date: August 23, 2012
    Applicant: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120211887
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over the die. A substrate has a plurality of conductive traces formed on the substrate. Each trace has an interconnect site for mating to the bumps. The interconnect sites have parallel edges along a length of the conductive traces under the bumps from a plan view for increasing escape routing density. The bumps have a noncollapsible portion for attaching to a contact pad on the die and fusible portion for attaching to the interconnect site. The fusible portion melts at a temperature which avoids damage to the substrate during reflow. The noncollapsible portion includes lead solder, and fusible portion includes eutectic solder. The interconnect sites have a width which is less than 1.2 times a width of the conductive trace. Alternatively, the interconnect sites have a width which is less than one-half a diameter of the bump.
    Type: Application
    Filed: May 5, 2012
    Publication date: August 23, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120208326
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over a surface of the semiconductor die. A plurality of conductive traces is formed over a surface of the substrate with interconnect sites. A masking layer is formed over the surface of the substrate. The masking layer has a plurality of parallel elongated openings each exposing at least two of the conductive traces and permitting a flow of bump material along a length of the plurality of conductive traces within the plurality of elongated openings while preventing the flow of bump material past a boundary of the plurality of elongated openings. One of the conductive traces passes beneath at least two of the elongated openings. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate.
    Type: Application
    Filed: December 6, 2010
    Publication date: August 16, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120199972
    Abstract: A semiconductor device is made by forming a conductive layer over a temporary carrier. The conductive layer includes a wettable pad. A stud bump is formed over the wettable pad. The stud bump can be a stud bump or stacked bumps. A semiconductor die is mounted to the carrier. An encapsulant is deposited over the semiconductor die and around the stud bump. A first interconnect structure is formed over a first surface of the encapsulant. The first interconnect structure includes a first IPD and is electrically connected to the stud bump. The carrier is removed. A second interconnect structure is formed over a second surface of encapsulant opposite the first interconnect structure. The second interconnect structure includes a second IPD. The first or second IPD includes a capacitor, resistor, or inductor. The semiconductor devices are stackable and electrically connected through the stud bump.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 9, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Reza A. Pagaila, Byung Tai Do, Shuangwu Huang, Rajendra D. Pendse
  • Publication number: 20120196406
    Abstract: A semiconductor package having an embedded die and solid vertical interconnections, such as stud bump interconnections, for increased integration in the direction of the z-axis (i.e., in a direction normal to the circuit side of the die). The semiconductor package can include a die mounted in a face-up configuration (similar to a wire bond package) or in a face-down or flip chip configuration.
    Type: Application
    Filed: April 6, 2012
    Publication date: August 2, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Publication number: 20120175769
    Abstract: A semiconductor device has a first substrate with a central region. A plurality of bumps is formed around a periphery of the central region of the first substrate. A first semiconductor die is mounted to the central region of the first substrate. A second semiconductor die is mounted to the first semiconductor die over the central region of the first substrate. A height of the first and second die is less than or equal to a height of the bumps. A second substrate has a thermal conduction channel. A surface of the second semiconductor die opposite the first die is mounted to the thermal conductive channel of the second substrate. A thermal interface layer is formed over the surface of the second die. The bumps are electrically connected to contact pads on the second substrate. A conductive plane is formed over a surface of the second substrate.
    Type: Application
    Filed: March 18, 2012
    Publication date: July 12, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Patent number: 8217514
    Abstract: A method of manufacture of an integrated circuit packaging system is provided including: providing a substrate; placing a patterned layer over the substrate for substantially removing crying warpage from the substrate, the patterned layer having an opening surrounded by other openings with the substrate exposed from the patterned layer within the other openings; mounting a semiconductor chip within the opening; and attaching a component directly over the other openings, the component having a horizontal length greater than horizontal lengths of the other openings.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: July 10, 2012
    Assignee: Stats Chippac Ltd.
    Inventor: Rajendra D. Pendse