Patents by Inventor Rajesh Rao

Rajesh Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080199996
    Abstract: A method forms a split gate memory device. A layer of select gate material over a substrate is patterned to form a first sidewall. A sacrificial spacer is formed adjacent to the first sidewall. Nanoclusters are formed over the substrate including on the sacrificial spacer. The sacrificial spacer is removed after the forming the layer of nanoclusters, wherein nanoclusters formed on the sacrificial spacer are removed and other nanoclusters remain. A layer of control gate material is formed over the substrate after the sacrificial spacer is removed. A control gate of a split gate memory device is formed from the layer of control gate material, wherein the control gate is located over remaining nanoclusters.
    Type: Application
    Filed: February 19, 2007
    Publication date: August 21, 2008
    Inventors: Ramachandran Muralidhar, Rajesh A. Rao, Matthew T. Herrick, Narayanan C. Ramani, Robert F. Steimle
  • Publication number: 20080188052
    Abstract: A semiconductor process and apparatus are disclosed for forming a split-gate thin film storage NVM device (10) by forming a select gate structure (3) on a first dielectric layer (2) over a substrate (1); forming a control gate structure (6) on a second dielectric layer (5) having embedded nanocrystals (15, 16) so that the control gate (6) is adjacent to the select gate structure (3) but separated therefrom by a gap (8); forming a floating doped region (4) in the substrate (1) below the gap (8) formed between the select gate structure and control gate structure; and forming source/drain regions (11, 12) in the substrate to define a channel region that includes the floating doped region (4).
    Type: Application
    Filed: February 6, 2007
    Publication date: August 7, 2008
    Inventors: Brian A. Winstead, Taras A. Kirichenko, Konstantin V. Loiko, Ramachandran Muralidhar, Rajesh A. Rao, Sung-Taeg Kang, Ko-Min Chang, Jane Yater
  • Publication number: 20080182375
    Abstract: A multi-bit split-gate memory device is formed over a substrate. A storage layer is formed over the substrate. A first conductive layer is formed over the storage layer. A thickness of a portion of the conductive layer is removed to leave a pillar of the conductive layer and an area of reduced thickness of the conductive layer. A first sidewall spacer is formed adjacent to the pillar to cover a first portion and a second portion of the area of reduced thickness of the conductive layer. The pillar is replaced with a select gate. The area of reduced thickness is selectively removed to leave the first and second portions as control gates.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Rajesh Rao, Ramachandran Muralidhar, Leo Mathew
  • Publication number: 20080182428
    Abstract: An electronic device can include a layer of discontinuous storage elements. A dielectric layer overlying the discontinuous storage elements can be substantially hydrogen-free. A process of forming the electronic device can include forming a layer including silicon over the discontinuous storage elements. In one embodiment, the process includes oxidizing at least substantially all of the layer. In another embodiment, the process includes forming the layer using a substantially hydrogen-free silicon precursor material and oxidizing at least substantially all of the layer.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Tushar P. Merchant, Chun-Li Liu, Ramachandran Muralidhar, Marius K. Orlowski, Rajesh A. Rao, Matthew Stoker
  • Publication number: 20080179658
    Abstract: A semiconductor device is made on a semiconductor substrate. A first insulating layer is formed on the semiconductor substrate for use as a gate dielectric for a high voltage transistor in a first region of the semiconductor substrate. After the first insulating layer is formed, a second insulating layer is formed on the semiconductor substrate for use as a gate dielectric for a non-volatile memory transistor in a second region of the substrate. After the second insulating layer is formed, a third insulating layer is formed on the semiconductor substrate for use as a gate dielectric for a logic transistor in a third region of the substrate.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Inventors: Rajesh A. Rao, Ramachandran Muralidhar
  • Publication number: 20080182377
    Abstract: In making a multi-bit memory cell, a first insulating layer is formed over a semiconductor substrate. A second insulating layer is formed over the first insulating layer. A layer of gate material is formed over the second insulating layer and patterned to leave a gate portion. The second insulating layer is etched to undercut the gate portion and leave a portion of the second insulating layer between the first insulating layer and the gate portion. Nanocrystals are formed on the first insulating layer. A first portion of the nanocrystals is under the gate portion on a first side of the portion of the second insulating layer and a second portion of the nanocrystals is under the gate portion on a second side of the portion of the second insulating layer. The first and second portions of the nanocrystals are for storing logic states of first and second bits, respectively.
    Type: Application
    Filed: January 29, 2007
    Publication date: July 31, 2008
    Inventors: Rajesh A. Rao, Ramachandran Muralidhar
  • Publication number: 20080176371
    Abstract: A method forms a nonvolatile memory device using a semiconductor substrate. A charge storage layer is formed overlying the semiconductor substrate and a layer of gate material is formed overlying the charge storage layer to form a control gate electrode. A protective layer overlies the layer of gate material. Dopants are implanted into the semiconductor substrate and are self-aligned to the control gate electrode on at least one side of the control gate electrode to form a source and a drain in the semiconductor substrate on opposing sides of the control gate electrode. The protective layer prevents the dopants from penetrating into the control gate electrode. The protective layer that overlies the layer of gate material is removed. Electrical contact is made to the control gate electrode, the source and the drain. In one form a select gate is also provided in the memory device.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 24, 2008
    Inventors: Rajesh Rao, Ramachandran Muralidhar
  • Publication number: 20080164512
    Abstract: A semiconductor device has a semiconductor substrate that in turn has a top semiconductor layer portion and a major supporting portion under the top semiconductor layer portion. An interconnect layer is over the semiconductor layer. A memory array is in a portion of the top semiconductor layer portion and a portion of the interconnect layer. The memory is erased by removing at least a portion of the major supporting portion and, after the step of removing, applying light to the memory array from a side opposite the interconnect layer. The result is that the memory array receives light from the backside and is erased.
    Type: Application
    Filed: January 5, 2007
    Publication date: July 10, 2008
    Inventors: Rajesh A. Rao, Leo Mathew, Ramachandran Muralidhar, Bruce E. White
  • Publication number: 20080134237
    Abstract: A TV-set is equipped with HDMI and USB connections that allow it to display and run audio-video content from a variety of conventional consumer devices. The TV-set is further equipped to provide a secure HDMI-USB interface that will allow the transfer of licensed high definition content and Internet subscriber services. Such secure HDMI-USB interface also enables a selection of proprietary application modules to be attached. Downloadable user interface templates, much like XML style sheets, are rendered to a user interface displayed on the screen. These are associated with corresponding thumbnails and URI's that allow a user to surf through lists and catalogs of materials, and then to play them in the appropriate formats and provide the machine with a customized controller. A remote commander is simplified, yet expanded to control all the attached devices through interactions with the user interface.
    Type: Application
    Filed: August 16, 2007
    Publication date: June 5, 2008
    Applicants: SONY CORPORATION, SONY ELECTRONICS, INC.
    Inventors: Edgar Tu, David Boyden, Takashi Hironaka, Thomas Dawson, George Williams, Ludovic Douillet, Rajesh Rao, Peter Rae Shintani, Djung Nguyen, Milton Frazier, Ian Charles Matthews, Behram Mario Dacosta, Robert Hardacker, Nicholas James Colsey, Mark Hanson, Jason R. Meerbergen, Leo Mark Pedlow, Rolf Toft
  • Publication number: 20080121967
    Abstract: A method of forming a semiconductor device, which is preferably a memory cell, includes forming a first dielectric layer over a semiconductor substrate, forming a plurality of discrete storage elements over the first dielectric layer, wherein each of the plurality of discrete storage elements has a diameter value that is approximately equal to each other, and forming a second dielectric layer over the plurality of discrete storage elements, wherein the second dielectric layer has a thickness, wherein the ratio of the thickness of the second dielectric to the diameter value is less than approximately 0.8. The spacing between the plurality of discrete storage elements may be greater than or equal to approximately the thickness of the second dielectric layer.
    Type: Application
    Filed: September 8, 2006
    Publication date: May 29, 2008
    Inventors: Ramachandran Muralidhar, Rajesh A. Rao, Michael A. Sadd, Bruce E. White
  • Publication number: 20080121966
    Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a semiconductor substrate, forming a plurality of discrete storage elements over the first dielectric layer, thermally oxidizing the plurality of discrete storage elements to form a second dielectrics over the plurality of discrete storage elements, and forming a gate electrode over the second dielectric layer, wherein a significant portion of the gate electrode is between pairs of the plurality of discrete storage elements. In one embodiment, portions of the gate electrode is in the spaces between the discrete storage elements and extends to more than half of the depth of the spaces.
    Type: Application
    Filed: September 8, 2006
    Publication date: May 29, 2008
    Inventors: Ramachandran Muralidhar, Rajesh A. Rao, Michael A. Sadd, Bruce E. White
  • Patent number: 7361567
    Abstract: A nanocrystal non-volatile memory (NVM) has a dielectric between the control gate and the nanocrystals that has a nitrogen content sufficient to reduce the locations in the dielectric where electrons can be trapped. This is achieved by grading the nitrogen concentration. The concentration of nitrogen is highest near the nanocrystals where the concentration of electron/hole traps tend to be the highest and is reduced toward the control gate where the concentration of electron/hole traps is lower. This has been found to have the beneficial effect of reducing the number of locations where charge can be trapped.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: April 22, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Ramachandran Muralidhar, Bruce E. White
  • Publication number: 20080026526
    Abstract: A method of making a semiconductor device includes a substrate having a semiconductor layer having a first portion for non-volatile memory and a second portion exclusive of the first portion. A first dielectric layer is formed on the semiconductor layer. A plasma nitridation is performed on the first dielectric layer. A first plurality of nanoclusters is formed over the first portion and a second plurality of nanoclusters over the second portion. The second plurality of nanoclusters is removed. A second dielectric layer is formed over the semiconductor layer. A conductive layer is formed over the second dielectric layer.
    Type: Application
    Filed: July 25, 2006
    Publication date: January 31, 2008
    Inventors: Rajesh A. Rao, Tien Ying Luo, Ramachandran Muralidhar, Robert F. Steimle, Sherry G. Straub
  • Publication number: 20070281964
    Abstract: The present invention relates to novel crystalline forms of the platelet aggregation inhibitor (+)-(S)-methyl-2-(2-chlorophenyl)-(6,7-dihydro-4H-thieno[3,2-c]pyrid-5-yl)acetate, clopidogrel (1), in the form of hydrogen bromide salts, identified as polymorph forms 1, 2 and 3. The present invention further relates to processes for preparing such forms, pharmaceutical compositions comprising such forms, and uses for such forms and compositions. The pharmaceutical compositions may be used, in particular, for inhibiting platelet aggregation or for treating, preventing or managing thrombosis, atherothrombosis, an atherothrombotic event, ischaemic stroke, myocardial infarction, non-Q-wave myocardial infarction, atherosclerosis, peripheral arterial disease, or unstable angina. The present invention also relates to methods of treating said disorders. Formula (1).
    Type: Application
    Filed: September 9, 2004
    Publication date: December 6, 2007
    Applicant: Generics [UK] Limited
    Inventors: Ramakrishnan Arul, Ajay Rawat, Maheshkumar Gadakar, Rajesh Rao, Abhinay Pise, Jason Gray
  • Patent number: 7265059
    Abstract: A FinFET includes a plurality of semiconductor fins. Over a semiconductor layer, patterned features (e.g. of minimum photolithographic size and spacing) are formed. In one example of fin formation, a first set of sidewall spacers are formed adjacent to the sides of these patterned features. A second set of sidewall spacers of a different material are formed adjacent to the sides of the first set of sidewall spacers. The first set of sidewall spacers are removed leaving the second set of sidewall spacers spaced from the patterned features. Both the second set of sidewall spacers and the patterned features are used as a mask to an etch that leaves semiconductor fins patterned as per the second set of sidewall spacers and the patterned features. These resulting semiconductor fins, which have sub-lithographic spacings, are then used for channels of a FinFET transistor.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 4, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Leo Mathew
  • Publication number: 20070202645
    Abstract: An oxide layer formed by deposition is subject to a treatment process to repair bond defects of the oxide layer. In one embodiment, the layer is treated with nitric oxide. In one embodiment, a nitric oxide gas is flowed over the dielectric layer at an elevated temperature. In still another embodiment, the oxide layer is treated with fluorine. A layer is deposited over the oxide layer and a species containing fluorine is ion implanted into the layer. The wafer is heated where the species is driven to the oxide layer.
    Type: Application
    Filed: February 28, 2007
    Publication date: August 30, 2007
    Inventors: Tien Ying Luo, Lakshmanna Vishnubhotla, Tushar P. Merchant, Rajesh A. Rao, Ramachandran Muralidhar
  • Publication number: 20070202708
    Abstract: An insulating layer formed by deposition is annealed in the presence of radical oxygen to reduce bond defects. A substrate is provided. An oxide layer is deposited overlying the substrate. The oxide layer has a plurality of bond defects. The oxide layer is annealed in the presence of radical oxygen to modify a substantial portion of the plurality of bond defects by using oxygen atoms. The anneal, in one form, is an in-situ steam generation (ISSG) anneal. In one form, the insulating layer overlies a layer of charge storage material, such as nanoclusters, that form a gate structure of a semiconductor storage device. The ISSG anneal repairs bond defects by oxidizing defective silicon bonds in the oxide layer when the oxide layer is silicon dioxide.
    Type: Application
    Filed: February 28, 2006
    Publication date: August 30, 2007
    Inventors: Tien Luo, Rajesh Rao
  • Patent number: 7241695
    Abstract: A semiconductor device includes a plurality of pillars formed from a conductive material. The pillars are formed by using a plurality of nanocrystals as a hardmask for patterning the conductive material. A thickness of the conductive material determines the height of the pillars. Likewise, a width of the pillar is determined by the diameter of a nanocrystal. In one embodiment, the pillars are formed from polysilicon and function as the charge storage region of a non-volatile memory cell having good charge retention and low voltage operation. In another embodiment, the pillars are formed from a metal and function as a plate electrode for a metal-insulator-metal (MIM) capacitor having an increased capacitance without increasing the surface area of an integrated circuit.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: July 10, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Rajesh A. Rao, Ramachandran Muralidhar
  • Publication number: 20070082495
    Abstract: A semiconductor device includes a plurality of pillars formed from a conductive material. The pillars are formed by using a plurality of nanocrystals as a hardmask for patterning the conductive material. A thickness of the conductive material determines the height of the pillars. Likewise, a width of the pillar is determined by the diameter of a nanocrystal. In one embodiment, the pillars are formed from polysilicon and function as the charge storage region of a non-volatile memory cell having good charge retention and low voltage operation. In another embodiment, the pillars are formed from a metal and function as a plate electrode for a metal-insulator-metal (MIM) capacitor having an increased capacitance without increasing the surface area of an integrated circuit.
    Type: Application
    Filed: October 6, 2005
    Publication date: April 12, 2007
    Inventors: Leo Mathew, Rajesh Rao, Ramachandran Muralidhar
  • Publication number: 20070077743
    Abstract: A FinFET includes a plurality of semiconductor fins. Over a semiconductor layer, patterned features (e.g. of minimum photolithographic size and spacing) are formed. In one example of fin formation, a first set of sidewall spacers are formed adjacent to the sides of these patterned features. A second set of sidewall spacers of a different material are formed adjacent to the sides of the first set of sidewall spacers. The first set of sidewall spacers are removed leaving the second set of sidewall spacers spaced from the patterned features. Both the second set of sidewall spacers and the patterned features are used as a mask to an etch that leaves semiconductor fins patterned as per the second set of sidewall spacers and the patterned features. These resulting semiconductor fins, which have sub-lithographic spacings, are then used for channels of a FinFET transistor.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: Rajesh Rao, Leo Mathew