Patents by Inventor Rajiv Shah

Rajiv Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11298059
    Abstract: A working electrode measuring the presence of an analyte is described as one embodiment. The working electrode includes a working conductor with a reactive surface that is operated at a first potential. The working electrode further includes a first transport material with properties that enable analyte flux to the reactive surface. Additionally, the working electrode has a second transport material with properties that enable reactant flux to the reactive surface, wherein the analyte flux and the reactant flux are in dissimilar directions.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: April 12, 2022
    Assignee: PercuSense, Inc.
    Inventors: Rajiv Shah, Bradley Liang, Katherine Wolfe, Ellen K Messer, Shaun M Pendo
  • Publication number: 20220095965
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 11284816
    Abstract: A system to automatically detect at least one physiological state is disclosed. The system includes a single probe for insertion within a subject that has an analyte sensor array for continuous monitoring of at least glucose and a second analyte. The system further includes an electronics module that includes a power supply, a processor, memory and a bi-directional communications module. When the electronics module is coupled with the analyte sensor array the power supply delivers power to the analyte sensor array and the processor. The processor analyzing glucose and the second analyte data to detect a first physiological state from a plurality of physiological states.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 29, 2022
    Assignee: PercuSense, Inc.
    Inventors: Rajiv Shah, Bradley C Liang, Ellen Bowman, Katherine Wolfe
  • Publication number: 20220087578
    Abstract: A continuous glucose monitoring system may include a hand-held monitor, a transmitter, an insulin pump, and an orthogonally redundant glucose sensor, which may comprise an optical glucose sensor and a non-optical glucose sensor. The former may be a fiber optical sensor, including a competitive glucose binding affinity assay with a glucose analog and a fluorophore-labeled glucose receptor, which is interrogated by an optical interrogating system, e.g., a stacked planar integrated optical system. The non-optical sensor may be an electrochemical sensor having a plurality of electrodes distributed along the length thereof. Proximal portions of the optical and electrochemical sensors may be housed inside the transmitter and operationally coupled with instrumentation for, e.g., receiving signals from the sensors, converting to respective glucose values, and communicating the glucose values.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Rajiv Shah, Jesper Svenning Kristensen, Katherine T. Wolfe, Soren Aasmul, Anubhuti Bansal
  • Patent number: 11266332
    Abstract: The invention disclosed herein includes amperometric glucose sensors having electrodes formed from processes that electrodeposit platinum black in a manner that produces relatively smooth three dimensional metal architectures, ones that contribute to sensor reliability and stability. Embodiments of the invention provide analyte sensors having such uniform electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: March 8, 2022
    Assignee: Medtronic MiniMed, inc.
    Inventors: Ting Huang, Ashwin K. Rao, Rajiv Shah, Qingling Yang
  • Publication number: 20220047187
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 17, 2022
    Inventors: Ning Yang, Raghavendhar Gautham, Rajiv Shah
  • Patent number: 11234624
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: February 1, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Patent number: 11229384
    Abstract: A continuous glucose monitoring system may include a hand-held monitor, a transmitter, an insulin pump, and an orthogonally redundant glucose sensor, which may comprise an optical glucose sensor and a non-optical glucose sensor. The former may be a fiber optical sensor, including a competitive glucose binding affinity assay with a glucose analog and a fluorophore-labeled glucose receptor, which is interrogated by an optical interrogating system, e.g., a stacked planar integrated optical system. The non-optical sensor may be an electrochemical sensor having a plurality of electrodes distributed along the length thereof. Proximal portions of the optical and electrochemical sensors may be housed inside the transmitter and operationally coupled with instrumentation for, e.g., receiving signals from the sensors, converting to respective glucose values, and communicating the glucose values.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: January 25, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Jesper Svenning Kristensen, Katherine T. Wolfe, Soren Aasmul, Anubhuti Bansal
  • Patent number: 11213231
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: January 4, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 11160477
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 2, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Raghavendhar Gautham, Rajiv Shah
  • Publication number: 20210259584
    Abstract: A sensor assembly is disclosed. The sensor assembly includes a piercing member with an interior and exterior. Also included within the sensor assembly is a sensor that is formed on a flexible substrate. The sensor includes a proximal end and a distal end where the distal end includes a flex that is terminated at a terminal end. The terminal end of the sensor being located within the interior of the piercing member.
    Type: Application
    Filed: July 17, 2019
    Publication date: August 26, 2021
    Inventors: Rajiv SHAH, Katherine WOLFE, Bradley LIANG, Shaun PENDO
  • Publication number: 20210236065
    Abstract: An apparatus for early detection of sepsis in a host is disclosed. The apparatus includes a first sensor to directly measure a glucose level, a second sensor to directly measure a lactate level and a third sensor to directly measure a tissue oxygen level. The first sensor, the second sensor, and the third sensor all being inserted at a single point of entry in a subcutaneous space of the host such that a predetermined correlation between the glucose level, lactate level, and tissue oxygen level signals conditions related to sepsis.
    Type: Application
    Filed: November 21, 2020
    Publication date: August 5, 2021
    Applicant: Percusense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C LIANG, BAHAR SUTORIUS, KATHERINE WOLFE, ELLEN MESSER, SHAUN PENDO
  • Patent number: 11049189
    Abstract: A computer-implemented method for identifying a property usage type based upon sensor data includes, with customer permission or affirmative consent, receiving data generated by various sensors; generating a report that includes a listing of events recorded by each sensor; analyzing data from the report to determine a property usage type score; receiving data regarding types and levels of insurance coverage associated with the property usage type score; receiving data derived from a homeowner's insurance policy; comparing the types and levels of insurance coverage associated with the property usage type score with the types and levels of insurance coverage from the homeowner's current insurance policy; and transmitting a message to the homeowner to update their insurance policy if there are differences between (i) the insurance coverage that the homeowner has, and (ii) the insurance coverage the homeowner should have based upon the property usage type score.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: June 29, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Rajiv Shah, Michael S. Jacob, Sripriya Sundararaman, Jeffrey D. Hevrin, Jeffrey G. Kinsey, Phillip Sangpil Moon, EllaKate LeFebre, Sunish Menon, Jeffrey W. Stoiber, James Dykeman, Erin Olander, Lucas Allen
  • Patent number: 11020028
    Abstract: The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: June 1, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Megan E. Little, Katherine T. Wolfe, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Patent number: 11017480
    Abstract: A computer-implemented method for identifying a property usage type based upon sensor data includes, with customer permission or affirmative consent, receiving data generated by various sensors; generating a report that includes a listing of events recorded by each sensor; analyzing data from the report to determine a property usage type score; receiving data regarding types and levels of insurance coverage associated with the property usage type score; receiving data derived from a homeowner's insurance policy; comparing the types and levels of insurance coverage associated with the property usage type score with the types and levels of insurance coverage from the homeowner's current insurance policy; and transmitting a message to the homeowner to update their insurance policy if there are differences between (i) the insurance coverage that the homeowner has, and (ii) the insurance coverage the homeowner should have based upon the property usage type score.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: May 25, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Rajiv Shah, Michael S. Jacob, Sripriya Sundararaman, Jeffrey D. Hevrin, Jeffrey G. Kinsey, Phillip Sangpil Moon, Ellakate LeFebre, Sunish Menon, Jeffrey W. Stoiber, James Dykeman, Erin Olander, Lucas Allen
  • Publication number: 20210113119
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: NING YANG, RAGHAVENDHAR GAUTHAM, RAJIV SHAH
  • Publication number: 20210045661
    Abstract: An on-body insertion system is described. The on-body system includes a sensor in a first position being substantially parallel to an insertion surface. Activation of an actuator transitions the sensor to a second position. Wherein the transition imparts movement to the sensor that is substantially parallel to the insertion surface and the second position results in the sensing area being beneath the insertion surface.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 18, 2021
    Applicant: PercuSense, Inc.
    Inventors: Katherine Wolfe, Joseph Ferreira, Ellen Messer, Rajiv Shah, Konrad Chan
  • Patent number: 10905365
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: February 2, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Raghavendhar Gautham, Rajiv Shah
  • Publication number: 20210023313
    Abstract: In one embodiment, an infusion set and sensor assembly delivered within a subject is disclosed. The assembly includes a cannula that is terminated at a cannula opening. The assembly further includes a sharp that is at least partially within the hollow of the cannula. A sensor having a proximal end and a distal end is also included in the assembly. The proximal end of the sensor is held in a fixed location while the distal end is retained with a portion of the cannula. The sensor further includes sensor slack, wherein transitioning the sharp from a first position to a second position simultaneously inserts the cannula and sensor to a desired insertion depth within a subject via a single point of insertion.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 28, 2021
    Applicant: PercuSense, Inc.
    Inventors: Katherine Wolfe, Rajiv Shah
  • Patent number: 10888281
    Abstract: An apparatus for early detection of sepsis in a host is disclosed. The apparatus includes a first sensor to directly measure a glucose level, a second sensor to directly measure a lactate level and a third sensor to directly measure a tissue oxygen level. The first sensor, the second sensor, and the third sensor all being inserted at a single point of entry in a subcutaneous space of the host such that a predetermined correlation between the glucose level, lactate level, and tissue oxygen level signals conditions related to sepsis.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: January 12, 2021
    Assignee: PercuSense, Inc.
    Inventors: Rajiv Shah, Bradley Liang, Bahar Sutorius, Katherine Wolfe, Ellen Messer, Shaun Pendo