Patents by Inventor Rajiv Shah

Rajiv Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190338339
    Abstract: Embodiments of the invention provide methods and materials for making analyte sensors having a plurality of layered elements such as amperometric glucose sensors that are used by diabetic individuals to monitor blood sugar concentrations. Embodiments of the invention utilize plasma deposition technologies to form thin films of adhesion promoting compositions useful in such sensors. Sensors that incorporate the thin film compositions formed by these processes exhibit a number of desirable characteristics.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 7, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Yiwen Li, Jenn-Hann Larry Wang, Rajiv Shah
  • Patent number: 10448872
    Abstract: Embodiments of the invention provide analyte sensors having optimized elements and/or configurations of elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: October 22, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Katherine T. Wolfe, Ameya S. Kantak, Eric Allan Larson, Daniel E. Pesantez, Dongjuan Xi, Chia-Hung Chiu, Rajiv Shah
  • Patent number: 10426383
    Abstract: The invention disclosed herein includes amperometric glucose sensors having electrodes formed from processes that electrodeposit platinum black in a manner that produces relatively smooth three dimensional metal architectures, ones that contribute to sensor reliability and stability. Embodiments of the invention provide analyte sensors having such uniform electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 1, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ting Huang, Ashwin K. Rao, Rajiv Shah, Qingling Yang
  • Patent number: 10420496
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: September 24, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20190269355
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 5, 2019
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Publication number: 20190265186
    Abstract: An electrode measuring the presence of an analyte is disclosed. The electrode includes a working conductor with an electrode reactive surface. The working electrode further includes a first reactive chemistry that is responsive to a first analyte. Additionally, the working electrode includes a first transport material that enables flux of the first analyte to the first reactive chemistry. Further included with the electrodes is a separation chemistry between the first reactive chemistry and the first transport material, the separation chemistry minimizing mixing of the first reactive chemistry and the first transport material.
    Type: Application
    Filed: October 5, 2018
    Publication date: August 29, 2019
    Applicant: PercuSense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C. LIANG, ELLEN BOWMAN, KATHERINE WOLFE, Shuan Pendo
  • Patent number: 10387966
    Abstract: A computer-implemented method for identifying a property usage type based upon sensor data includes, with customer permission or affirmative consent, receiving data generated by various sensors; generating a report that includes a listing of events recorded by each sensor; analyzing data from the report to determine a property usage type score; receiving data regarding types and levels of insurance coverage associated with the property usage type score; receiving data derived from a homeowner's insurance policy; comparing the types and levels of insurance coverage associated with the property usage type score with the types and levels of insurance coverage from the homeowner's current insurance policy; and transmitting a message to the homeowner to update their insurance policy if there are differences between (i) the insurance coverage that the homeowner has, and (ii) the insurance coverage the homeowner should have based upon the property usage type score.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: August 20, 2019
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Rajiv Shah, Michael Shawn Jacob, Sripriya Sundararaman, Jeffrey David Hevrin, Jeffrey Kinsey, Phillip Sangpil Moon, EllaKate LeFebre, Sunish Menon, Jeffrey Wilson Stoiber, James Nolan Dykeman, Erin Ann Olander, Lucas Allen
  • Publication number: 20190246960
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 15, 2019
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20190246961
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20190246962
    Abstract: A system to automatically detect at least one physiological state is disclosed. The system includes a single probe for insertion within a subject that has an analyte sensor array for continuous monitoring of at least glucose and a second analyte. The system further includes an electronics module that includes a power supply, a processor, memory and a bi-directional communications module. When the electronics module is coupled with the analyte sensor array the power supply delivers power to the analyte sensor array and the processor. The processor analyzing glucose and the second analyte data to detect a first physiological state from a plurality of physiological states.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 15, 2019
    Applicant: PercuSense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C. LIANG, ELLEN BOWMAN, KATHERINE WOLFE
  • Publication number: 20190216371
    Abstract: Sensing and infusion devices are described. In one embodiment, a sensing and infusion device may include an implantable segment having a sensor. The sensing and infusion device may also include a catheter, and a sensor channel may be formed in the catheter. The sensor channel may be configured to retain at least a portion of the implantable segment.
    Type: Application
    Filed: May 11, 2017
    Publication date: July 18, 2019
    Inventors: Rajiv SHAH, Ellen MESSER, Katherine WOLFE, Shaun PENDO
  • Patent number: 10342468
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 9, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 10335077
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 2, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 10335076
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 2, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 10327680
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Raghavendhar Gautham, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai, Jeffrey Nishida
  • Patent number: 10327678
    Abstract: Embodiments of the invention provide analyte sensors having optimized elements and/or configurations of elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: June 25, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rebecca K. Gottlieb, Rajiv Shah, Eric A. Larson, Chia Chiu
  • Patent number: 10327686
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20190183339
    Abstract: A biosensor assembly that measures multiple physical parameters is disclosed. The biosensor assembly includes a first implantable probe and a first skin contacting electrode. Wherein a first physiological parameter is measured between the first implantable probe and the first skin contactable electrode.
    Type: Application
    Filed: August 3, 2018
    Publication date: June 20, 2019
    Applicant: PercuSense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C. LIANG, ELLEN MESSER, KATHERINE WOLFE
  • Patent number: 10321865
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: June 18, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Raghavendhar Gautham, Ning Yang, Rajiv Shah
  • Patent number: 10288578
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 14, 2019
    Assignee: MEDTRONIC MINIMED, INC
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss