Patents by Inventor Rajiv Shah

Rajiv Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9645111
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: May 9, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Catherine M. Szyman, Michael E. Miller, Rajiv Shah
  • Patent number: 9642568
    Abstract: A continuous glucose monitoring system may include a hand-held monitor, a transmitter, an insulin pump, and an orthogonally redundant glucose sensor, which may comprise an optical glucose sensor and a non-optical glucose sensor. The former may be a fiber optical sensor, including a competitive glucose binding affinity assay with a glucose analog and a fluorophore-labeled glucose receptor, which is interrogated by an optical interrogating system, e.g., a stacked planar integrated optical system. The non-optical sensor may be an electrochemical sensor having a plurality of electrodes distributed along the length thereof. Proximal portions of the optical and electrochemical sensors may be housed inside the transmitter and operationally coupled with instrumentation for, e.g., receiving signals from the sensors, converting to respective glucose values, and communicating the glucose values.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: May 9, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Jesper Svenning Kristensen, Katherine T. Wolfe, Soren Aasmul, Anubhuti Bansal
  • Patent number: 9632060
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 25, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Robert C. Mucic, Genival D. de Barros, Carlos A. Callirgos, Manjunath Sirigiri, Joseph Paul Brinson
  • Patent number: 9625414
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: April 18, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Rajiv Shah
  • Patent number: 9625415
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 18, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Patent number: 9616165
    Abstract: A glucose sensor product maintains the sterility of the glucose sensor while allowing gaseous manufacturing by-products to be vented from the inside of the glucose sensor package. An exemplary glucose sensor product includes a plastic package tray and a glucose sensor assembly in the plastic package tray. The glucose sensor assembly includes an electrochemical sensor with glucose oxidase enzyme, a sensor base formed at least in part from plastic, a sensor mounting pedestal formed at least in part from plastic, and a sensor introducer formed at least in part from plastic. The glucose sensor product also includes a microbial barrier material coupled to the plastic package tray to seal the glucose sensor assembly in the plastic package tray. The microbial barrier material maintains sterility of the glucose sensor assembly while venting substances outgassed from the plastic package tray, the sensor base, the sensor mounting pedestal, and the sensor introducer.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 11, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Eric Allan Larson, Rajiv Shah
  • Publication number: 20170079564
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Inventors: RAJIV SHAH, BAHAR REGHABI, JAMES L. HENKE, WAYNE A. MORGAN, GOPIKRISHNAN SOUNDARARAJAN, DAVID Y. CHOY, PETER SCHULTZ, UDO HOSS
  • Publication number: 20170055892
    Abstract: The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 2, 2017
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Megan E. Little, Katherine T. Wolfe, Raghavendhar Gautham, Bradley Chi Liang, Rajiv Shah
  • Patent number: 9579066
    Abstract: Disclosed are a system and method for determining a metric and/or indicator of a reliability of a blood glucose sensor in providing glucose measurements. In one aspect, the metric and/or indicator may be computed based, at least in part, on an observed trend associated with signals generated by the blood glucose sensor.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: February 28, 2017
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca K. Gottlieb, Ying Luo, Raghavendhar Gautham, Bradley Liang, Anirban Roy, Kenneth W. Cooper, Rajiv Shah, Barry Keenan
  • Publication number: 20170021100
    Abstract: A system and method for providing closed loop infusion formulation delivery which accurately calculates a delivery amount based on a sensed biological state by adjusting an algorithm's programmable control parameters. The algorithm calculates a delivery amount having proportional, derivative, and basal rate components. The control parameters may be adjusted in real time to compensate for changes in a sensed biological state that may result from daily events. Safety limits on the delivery amount may be included in the algorithm. The algorithm may be executed by a computing element within a process controller for controlling closed loop infusion formulation delivery. The biological state is sensed by a sensing device which provides a signal to the controller. The controller calculates an infusion formulation delivery amount based on the signal and sends commands to an infusion formulation delivery device which delivers an amount of infusion formulation determined by the commands.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 26, 2017
    Inventors: Timothy J. Starkweather, Ronald J. Lebel, Rajiv Shah, Michael E. Miller
  • Patent number: 9549698
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: January 24, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz
  • Patent number: 9541519
    Abstract: Embodiments of the invention provide electrochemical analyte sensors having elements designed to modulate their electrochemical reactions as well as methods for making and using such sensors.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: January 10, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Rebecca K. Gottlieb, Gopikrishnan Soundararajan, James D. Holker
  • Patent number: 9493807
    Abstract: The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: November 15, 2016
    Assignee: Medtronic Minimed, Inc.
    Inventors: Megan E. Little, Katherine T. Wolfe, Raghavendhar Gautham, Bradley Chi Liang, Rajiv Shah
  • Patent number: 9492111
    Abstract: The disclosure provides a sensor including a sensor having an external surface and a cannula. The cannula comprises a substantially cylindrical wall encircling a lumen, at least one aperture and a distal end. The sensor is positioned within the lumen and the distal end of the cannula extends beyond the sensor. This configuration functions for example to stabilize chemical reactions associated with the sensor by creating a buffer zone between the sensor and the surrounding tissues at the site of implantation. In certain embodiments, the sensor can further comprise an accessory material in proximity to the external surface, wherein the accessory material modifies the biological response of a tissue that is in contact with the sensor. The sensor can also comprise anchors that keeps the sensor in contact with subcutaneous tissue of a subject upon insertion of the sensor into the body of the subject.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: November 15, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Gopikrishnan Soundararajan, Nannette M. Van Antwerp, Barry Pham
  • Publication number: 20160320338
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 9480796
    Abstract: A system and method for providing closed loop infusion formulation delivery which accurately calculates a delivery amount based on a sensed biological state by adjusting an algorithm's programmable control parameters. The algorithm calculates a delivery amount having proportional, derivative, and basal rate components. The control parameters may be adjusted in real time to compensate for changes in a sensed biological state that may result from daily events. Safety limits on the delivery amount may be included in the algorithm. The algorithm may be executed by a computing element within a process controller for controlling closed loop infusion formulation delivery. The biological state is sensed by a sensing device which provides a signal to the controller. The controller calculates an infusion formulation delivery amount based on the signal and sends commands to an infusion formulation delivery device which delivers an amount of infusion formulation determined by the commands.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: November 1, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Timothy J. Starkweather, Ronald J. Lebel, Rajiv Shah, Michael E. Miller
  • Publication number: 20160262675
    Abstract: A thin film sensor, such as a glucose sensor, is provided for transcutaneous placement at a selected site within the body of a patient. The sensor includes several sensor layers that include conductive layers and includes a proximal segment defining conductive contacts adapted for electrical connection to a suitable monitor, and a distal segment with sensor electrodes for transcutaneous placement. The sensor electrode layers are disposed generally above each other, for example with the reference electrode above the working electrode and the working electrode above the counter electrode. The electrode layers are separated by dielectric layer.
    Type: Application
    Filed: May 12, 2016
    Publication date: September 15, 2016
    Inventors: RAJIV SHAH, REBECCA K. GOTTLIEB
  • Publication number: 20160252473
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: May 13, 2016
    Publication date: September 1, 2016
    Inventors: Ning Yang, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Publication number: 20160249840
    Abstract: Embodiments of the invention provide amperometric analyte sensor systems comprising a plurality of electrodes including one or more electrodes designed to monitor pH in order to facilitate the sensing of analytes at different pH levels within a sensor environment. Typical embodiments of the invention include glucose oxidase based amperometric sensors used in the management of diabetes.
    Type: Application
    Filed: February 26, 2015
    Publication date: September 1, 2016
    Inventors: Daniel E. Pesantez, Jia Yao, Bradley C. Liang, Rajiv Shah
  • Publication number: 20160228042
    Abstract: Subject matter disclosed herein relates to monitoring and/or controlling levels of an analyte in bodily fluid. In particular, estimation of a concentration of the analyte in a first physiological compartment based upon observations of a concentration of the analyte in a second physiological compartment may account for a latency in transporting the analyte between the first and second physiological compartments.
    Type: Application
    Filed: October 22, 2012
    Publication date: August 11, 2016
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Xiaolong Li, Brian T. Kannard, Rajiv Shah