Patents by Inventor Ralf Messing

Ralf Messing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965483
    Abstract: A method for operating a wind farm having a first wind power installation and a second wind power installation, to an associated wind power installation and to an associated wind farm. The second wind power installation is located in the wake of the first wind power installation in at least one wake wind direction. A tip-speed coefficient is determined from the ratio of a second tip-speed ratio of the second wind power installation and a first tip-speed ratio of the first wind power installation and a pitch-angle coefficient is determined from the ratio of a second pitch angle of the second wind power installation and a first pitch angle of the first wind power installation.
    Type: Grant
    Filed: February 15, 2023
    Date of Patent: April 23, 2024
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Malte Heyen
  • Patent number: 11946451
    Abstract: A method for operating a wind power installation for the purpose of generating electrical power from wind, wherein the wind power installation has an aerodynamic rotor having rotor blades that can be adjusted in their blade angle, and the rotor is operated at a settable rated rotor speed, wherein a turbulence class at a site of the wind power installation is determined, and the rated rotor speed is defined in dependence on the determined turbulence class.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: April 2, 2024
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Hauke Maass, Florian Rubner, Christian Möller
  • Patent number: 11788506
    Abstract: A rotor blade of a wind turbine, having a rotor blade length, a rotor blade depth extending over the rotor blade length, a rotor blade thickness extending over the rotor blade length, and a thickness of a trailing edge of the rotor blade extending over the rotor blade length, wherein, in a region of the rotor blade length, the rotor blade simultaneously has a splitter plate that has a predetermined length and a Gurney flap that has a predetermined height, wherein a ratio of the predetermined height of the Gurney flap to the predetermined length of the splitter plate at a particular position in the direction of the rotor blade length is selected in such a manner that a threshold value that decreases with a relative profile thickness, which is defined as a ratio of the rotor blade thickness to the rotor blade depth, is not reached.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: October 17, 2023
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Jochen Stemberg, Hauke Maass
  • Publication number: 20230265826
    Abstract: The present disclosure relates to a rotor blade of a wind power installation, at least comprising a first rotor blade component having: a first end for arranging on the wind power installation, and a second end for connecting to a second rotor blade component; a second rotor blade component having: a first end for arranging on the first rotor blade component, and a second end wherein the first rotor blade component can be connected to the second rotor blade component at a separating point to the rotor blade, wherein the rotor blade has an aerodynamically open profile at the separating point.
    Type: Application
    Filed: February 10, 2023
    Publication date: August 24, 2023
    Inventors: Christian Möller, Jochen Stemberg, Ralf Messing
  • Publication number: 20230258155
    Abstract: A method for operating a wind farm having a first wind power installation and a second wind power installation, to an associated wind power installation and to an associated wind farm. The second wind power installation is located in the wake of the first wind power installation in at least one wake wind direction. A tip-speed coefficient is determined from the ratio of a second tip-speed ratio of the second wind power installation and a first tip-speed ratio of the first wind power installation and a pitch-angle coefficient is determined from the ratio of a second pitch angle of the second wind power installation and a first pitch angle of the first wind power installation.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 17, 2023
    Inventors: Ralf Messing, Malte Heyen
  • Publication number: 20230258151
    Abstract: A rotor blade of a wind turbine, to an associated wind turbine, to an associated wind farm and to associated methods. The rotor blade has a leading edge and a trailing edge and extends in a longitudinal direction of the rotor blade between a root end and a tip end, wherein a direct connection between the leading edge and the trailing edge is referred to as a chord line, wherein the rotor blade has serrations in the region of the trailing edge at least in some section or sections, wherein each of the serrations has a base line, which is arranged at the trailing edge, and an end point, which is furthest away from the base line, which together span a plane of the serration, wherein an angle between the plane of at least one of the serrations and the profile chord of the rotor blade is formed as a function of at least one environmental parameter at the installation location of the wind turbine.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 17, 2023
    Inventors: Ralf Messing, Jochen Stemberg
  • Patent number: 11668281
    Abstract: A method for designing and operating a wind power installation for generating electrical power from wind, wherein the wind power installation has an aerodynamic rotor with rotor blades of which the blade pitch angle can be adjusted, wherein the rotor blades are populated with a plurality of vortex generators between the rotor blade root and the rotor blade tip, characterized in that a radius position up to which the population with the vortex generators in the longitudinal direction of the respective rotor blade is carried out is determined depending on a sound power level to be set at a site of the wind power installation. A rotor blade of a wind power installation, to an associated wind power installation and to a wind farm.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: June 6, 2023
    Assignee: Wobben Properties GmbH
    Inventor: Ralf Messing
  • Patent number: 11644007
    Abstract: A rotor blade, with a suction side and a pressure side, for a wind turbine, having a rotor blade root of a hub region for attaching the rotor blade to a rotor hub, a rotor blade tip, which is arranged on a side, facing away from the rotor blade root, of a tip region, at least one vortex generator, which is arranged between the rotor blade root and the rotor blade tip, wherein the at least one vortex generator comprises swirl elements with a length and a height, which are arranged one next to the other in a longitudinal direction of the rotor blade and are in each case oriented at an angle to a main flow direction of the rotor blade, wherein, in the longitudinal direction of the rotor blade, the swirl elements have a lateral spacing to one another. A variation in the geometry of the swirl elements is realized in a manner dependent on a respective distance between the arrangement of the swirl elements and the rotor blade root.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: May 9, 2023
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Jochen Stemberg
  • Patent number: 11614071
    Abstract: Provided is a method for operating a wind turbine, an associated wind turbine and a wind park. The method comprises a) providing an indicator for the occurrence of a flow separation on a pressure side of a rotor blade of a rotor of the wind turbine, and b) changing an operational management of the wind turbine using the indicator, wherein the indicator comprises a pitch angle of the rotor blade. By using the pitch angle as an indicator, a flow separation on the pressure side of the rotor blade can be effectively prevented.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: March 28, 2023
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Carl Michael Schwarz
  • Publication number: 20230085398
    Abstract: A wind turbine rotor blade is provided comprising a rotor blade root region, a rotor blade tip region, a pressure side, a suction side, a front edge, a rear edge and at least one web along a longitudinal direction of the rotor blade. Furthermore, a deflecting unit is provided comprising at least two deflecting bends between one end of the at least one web and the rotor blade tip region.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 16, 2023
    Inventors: Muhanad Mahmoud, Hussam Daboul, Ralf Messing
  • Publication number: 20230073582
    Abstract: Provided is a method for adapting an operating characteristic of a wind power installation. The installation has a rotor with rotor blades having adjustable blade angles and operable with a variable rotor rotational speed. To control the installation, use is made of an operating characteristic which describes a relationship between the rotor rotational speed and an operating variable. The operating characteristic has a first portion with a first rotational speed range and a second portion with a second rotational speed range. The first rotational speed range has lower rotational speeds than the second rotational speed range, and the operating characteristic is adapted such that values of the operating variable of the first portion are increased values of the variable of the second portion are changed toward higher rotational speeds, and an expected total number of revolutions of the rotor over a predetermined lifetime of the installation remains approximately the same.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 9, 2023
    Inventors: Ralf Messing, Hendrik Schnell, Harro Harms, Kemal Kartal
  • Patent number: 11536248
    Abstract: The present disclosure relates to a wind power installation having an aerodynamic rotor with at least one rotor blade, wherein the rotor blade has an active flow control device, which is designed to actively influence a flow over the rotor blade, wherein the flow control device comprises an opening in a rotor blade surface, referred to as a rotor blade surface opening, wherein the flow control device is configured to draw off and/or blow out air through the rotor blade surface opening air by way of a controllable air flow, wherein the wind power installation has a controller which is configured to control an amount of the controllable air flow through the rotor blade surface opening according to at least one of the following rules: if a rotational speed threshold value of a rotational speed of the rotor is exceeded, increasing the maximum controllable air flow successively with increasing rotational speed, if a torque threshold value of a torque of the rotor is exceeded, increasing the maximum controllable ai
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: December 27, 2022
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Muhanad Mahmoud
  • Publication number: 20220325694
    Abstract: A method for operating a wind farm having a plurality of wind power installations is provided. The installations each comprise an aerodynamic rotor, and the rotors each have an aerodynamic characteristic value. The method includes: obtaining a setpoint power value of the wind farm, in particular a setpoint value of the electrical power of the wind farm to be fed in, ascertaining an actual power value of the wind farm as the sum of actual electrical powers of the operated wind power installations, determining a permissibility of a power-reduced operating mode of each of the wind power installations of the wind farm on the basis of the associated aerodynamic characteristic value, and operating the wind power installations of the wind farm such that each operated wind power installation is operated in a permissible operating mode and the ascertained actual power value does not exceed the obtained setpoint power value.
    Type: Application
    Filed: April 13, 2022
    Publication date: October 13, 2022
    Inventors: Ralf MESSING, Kai BUSKER
  • Patent number: 11459999
    Abstract: A rotor blade of a rotor of a wind turbine, and to an associated wind turbine, and to a method for optimizing a wind turbine. Prior to being mounted on the wind turbine, the rotor blade is split at a parting point into an inner blade section and an outer blade section, wherein a longitudinal direction of the rotor blade is defined from the root section to the blade tip, wherein the rotor blade has at least one swirl element, wherein the swirl element has an extent in the longitudinal direction of the rotor blade, wherein a distance between a start, facing toward the root section, and an end, facing toward the rotor blade tip, of the swirl element in the longitudinal direction is referred to as total length, and wherein a distance between the parting point and the outer end of the swirl element is referred to as outer length, wherein a ratio of outer length to total length is less than 0.25.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: October 4, 2022
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Jan Carsten Ziems, Florian Rubner
  • Publication number: 20220307476
    Abstract: A wind turbine having a wake control system that is configured so as to control the wind turbine on the basis of wake effects caused at a further wind turbine, wherein the wake control system is configured so as to achieve control based on a turbulence measured value from a turbulence measurement sensor of the further wind turbine. A wind turbine having a turbulence measurement sensor that is configured so as to determine a turbulence measured value, wherein the turbulence measured value is indicative of a turbulence and/or wind shear at the wind turbine, wherein the wind turbine is configured so as to provide the turbulence measured value in order to control the wind turbine and/or a further wind turbine. A wake control system for a wind turbine, but also an improved wind farm and an improved method for controlling a wind turbine and a wind farm.
    Type: Application
    Filed: June 14, 2022
    Publication date: September 29, 2022
    Inventors: Ralf MESSING, Dennis DIETZ, Paul HAVLICEK
  • Patent number: 11454206
    Abstract: A rotor blade of an aerodynamic rotor of a wind turbine having a rotor axis of rotation and an outer radius, comprising a blade root for fastening to a rotor hub, a blade tip which faces away from the blade root, a blade longitudinal axis which extends from the blade root to the blade tip, a blade front edge which faces toward the front in the direction of movement of the rotor blade, a blade rear edge which faces toward the rear in the direction of movement of the rotor blade, and profile sections which change along the blade longitudinal axis, wherein each profile section has a profile chord which extends from the blade front edge to the blade rear edge, and each profile chord has an installation angle as an angle in relation to a rotor plane, wherein the installation angle from the blade root to the blade tip first decreases in a blade inner region oriented toward the blade root, increases again in a blade central region and decreases again in a blade tip region oriented toward the blade tip.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: September 27, 2022
    Assignee: Wobben Properties GmbH
    Inventor: Ralf Messing
  • Patent number: 11441537
    Abstract: A method for controlling a wind turbine and an associated wind turbine. The wind turbine is operated according to an operating point, wherein the operating point is determined at least by a pitch angle and a tip speed ratio, wherein one of the operating points corresponds to a maximum power coefficient, wherein, in a partial load range, the wind turbine is operated at an operating point which differs from the operating point with the maximum power coefficient. The distance of the operating point from the operating point with the maximum power coefficient is set in accordance with a measured turbulence measure.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: September 13, 2022
    Assignee: Wobben Properties GmbH
    Inventor: Ralf Messing
  • Patent number: 11441538
    Abstract: A wind turbine includes a tower, an aerodynamic rotor operable at a variable rotor speed and having a plurality of rotor blades each having an adjustable rotor blade setting angle and a generator for generating an electrical output power. An operating characteristic curve is prespecified for operating the wind turbine. The operating characteristic curve indicates a relationship between the rotor speed and the output power. A controller is provided, which sets the output power in accordance with the operating characteristic curve depending on the rotor speed. The the operating characteristic curve has a starting rotation speed to which the rotor speed increases as soon as the wind turbine starts when a sufficient wind speed is reached. The starting rotation speed is defined depending on a tower natural frequency of the wind turbine and/or depending on a detected turbulence measure of the prevailing wind.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: September 13, 2022
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Mustafa Onur Kimilli, Frank Zimmermann, Maik Nitsche, Matthias Giesler
  • Patent number: 11428204
    Abstract: A two-part or multi-part rotor blade and also to a method which is associated with it. The rotor blade is split into at least one rotor blade component which is close to the hub and one rotor blade component which is remote from the hub at a separation point in the longitudinal direction, wherein the rotor blade component which is close to the hub and the rotor blade component which is remote from the hub can be connected at the separation point for operation of the wind turbine. A ratio of profile thickness to profile depth, called relative thickness, at the separation point lies within a range of from 0.4 to 0.5. An improved two-part or multi-part rotor blade in spite of the unexpectedly high relative thicknesses.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: August 30, 2022
    Assignee: Wobben Properties GmbH
    Inventors: Ralf Messing, Mustafa Onur Kimilli, Florian Rubner
  • Publication number: 20220268253
    Abstract: A rotor for a wind, to a wind turbine and to a method for increasing the yield of a rotor of a wind turbine. In particular, a rotor for a wind turbine, comprising at least one rotor blade, having a rotor blade trailing edge and rotor blade leading edge extending between the rotor blade root and the rotor blade tip over a rotor blade length, a profile depth established between the rotor blade leading edge and the rotor blade trailing edge, and an adjustable pitch angle, wherein the rotor blade has at least one profile element which is arranged on the rotor blade trailing edge or in the region adjacent to the rotor blade trailing edge for increasing the profile depth by an enlargement value, characterized by a control unit for determining a pitch angle to be set, which is configured to determine the pitch angle to be set depending on the enlargement value.
    Type: Application
    Filed: June 25, 2020
    Publication date: August 25, 2022
    Inventors: Ralf Messing, Ellen Bauer, Florian Rubner