Patents by Inventor Ralph B. James

Ralph B. James has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030121885
    Abstract: A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/0 NH4F and 10 w/o H2O2 in water.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 3, 2003
    Inventors: Gomez W. Wright, Ralph B. James, Arnold Burger, Douglas A. Chinn
  • Patent number: 6524966
    Abstract: A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: February 25, 2003
    Assignee: Sandia National Laboratories
    Inventors: Gomez W. Wright, Ralph B. James, Arnold Burger, Douglas A. Chinn
  • Patent number: 6373064
    Abstract: An improved semiconductor radiation detector which involves engineering the internal electrical field through an external infrared light source. A planar semiconductor radiation detector is applied with a bias voltage, and an optical light beam with a selected photon energy is used to illuminate the detector and engineer the internal electric field. Different light beam intensities or photon energies produce different distributions of the internal electric field. The width of the electric field can be fine-tuned by changing the optical beam intensity and wavelength, so that the radiation detector performance can be optimized. The detector is portable, small in size, and operates at room temperature.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: April 16, 2002
    Assignee: Sandia Corporation
    Inventors: H. Walter Yao, Ralph B. James
  • Patent number: 6350989
    Abstract: Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: February 26, 2002
    Assignee: Sandia National Laboratories
    Inventors: Edwin Y. Lee, Ralph B. James
  • Patent number: 6344650
    Abstract: An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the “electron-only” semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: February 5, 2002
    Assignee: Sandia Corporation
    Inventors: Edwin Y. Lee, Ralph B. James
  • Patent number: 6043106
    Abstract: A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: March 28, 2000
    Inventors: Mark J. Mescher, Ralph B. James, Tuviah E. Schlesinger, Haim Hermon
  • Patent number: 5641392
    Abstract: A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction.
    Type: Grant
    Filed: July 19, 1995
    Date of Patent: June 24, 1997
    Inventors: Ralph B. James, John M. Van Scyoc, III, Tuviah E. Schlesinger