Patents by Inventor Ralph Korenstein

Ralph Korenstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220350054
    Abstract: According to various aspects and embodiments, a system and method for providing an optical element is disclosed. In one example, the optical element includes a substrate formed from a Nanocomposite Optical Ceramic (NCOC) material that includes a first oxide nanograin material dispersed in a second oxide nanograin material, and a compressive layer of the NCOC material formed on a surface of the substrate.
    Type: Application
    Filed: July 7, 2022
    Publication date: November 3, 2022
    Inventors: Ralph Korenstein, Christopher S. Nordahl
  • Patent number: 11451309
    Abstract: A dynamic aperture is disclosed. A dynamic aperture includes a base layer, a conductive structure disposed on the base layer, and a layer of a material having a dynamically controllable electrical conductivity that is disposed over the base layer and the conductive structure. A transmission profile of the dynamic aperture is determined by a combination of the conductive structure and the layer of the material. The transmission profile is dynamically alterable by controlling the electrical conductivity of the layer of the material.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: September 20, 2022
    Assignee: RAYTHEON COMPANY
    Inventors: Kyle L. Grosse, Gary A. Frazier, Catherine Trent, Ralph Korenstein
  • Publication number: 20220244431
    Abstract: A shortwave to midwave infrared (SWIR-MWIR) optical window includes a substrate formed from a nanocomposite optical ceramic material and a coating disposed on the substrate to provide electromagnetic interference (EMI) protection. The coating is electrically conductive and SWIR-MWIR transparent and comprises a doped zinc oxide material. A method of protecting an EO/IR sensor from electromagnetic interference (EMI) includes depositing a thin film electrically conductive and SWIR-MWIR transparent coating over a surface an optical window of the EO/IR sensor. The optical window is formed from a nanocomposite optical ceramic material and has a curved surface. The thin film electrically conductive and SWIR-MWIR transparent coating comprises an electrically conductive zinc oxide material.
    Type: Application
    Filed: February 1, 2021
    Publication date: August 4, 2022
    Inventors: Eric Riedel, Ralph Korenstein
  • Patent number: 11402548
    Abstract: According to various aspects and embodiments, a system and method for providing an optical element is disclosed. In one example, the optical element includes a substrate formed from a Nanocomposite Optical Ceramic (NCOC) material that includes a first oxide nanograin material dispersed in a second oxide nanograin material, and a compressive layer of the NCOC material formed on a surface of the substrate.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: August 2, 2022
    Assignee: RAYTHEON COMPANY
    Inventors: Ralph Korenstein, Christopher S. Nordahl
  • Publication number: 20210044364
    Abstract: A dynamic aperture is disclosed. A dynamic aperture includes a base layer, a conductive structure disposed on the base layer, and a layer of a material having a dynamically controllable electrical conductivity that is disposed over the base layer and the conductive structure. A transmission profile of the dynamic aperture is determined by a combination of the conductive structure and the layer of the material. The transmission profile is dynamically alterable by controlling the electrical conductivity of the layer of the material.
    Type: Application
    Filed: August 9, 2019
    Publication date: February 11, 2021
    Inventors: Kyle L. Grosse, Gary A. Frazier, Catherine Trent, Ralph Korenstein
  • Patent number: 10550041
    Abstract: Fluoride-based nanocomposite materials, optical articles made therefrom, and methods of making the fluoride-nanocomposite materials and optical articles. In certain examples, a fluoride-based nanocomposite material includes two or more interspersed fluoride-based nanograin materials with grains having one, two, or three dimensions that are less than 1 micrometer.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: February 4, 2020
    Assignee: RAYTHEON COMPANY
    Inventor: Ralph Korenstein
  • Patent number: 10385220
    Abstract: Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: August 20, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Joseph M. Wahl, Richard L. Gentilman, Randal W. Tustison, Christopher S. Nordahl, Huy Q. Nguyen, Ralph Korenstein
  • Publication number: 20180341047
    Abstract: According to various aspects and embodiments, a system and method for providing an optical element is disclosed. In one example, the optical element includes a substrate formed from a Nanocomposite Optical Ceramic (NCOC) material that includes a first oxide nanograin material dispersed in a second oxide nanograin material, and a compressive layer of the NCOC material formed on a surface of the substrate.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 29, 2018
    Inventors: Ralph Korenstein, Christopher S. Nordahl
  • Publication number: 20180258294
    Abstract: Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Inventors: Joseph M. Wahl, Richard L. Gentilman, Randal W. Tustison, Christopher S. Nordahl, Huy Q. Nguyen, Ralph Korenstein
  • Patent number: 10000642
    Abstract: Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: June 19, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Joseph M. Wahl, Richard L. Gentilman, Randall W. Tustison, Christopher S. Nordahl, Huy Q. Nguyen, Ralph Korenstein
  • Publication number: 20160068686
    Abstract: Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 10, 2016
    Inventors: Joseph M. Wahl, Richard L. Gentilman, Randall W. Tustison, Christopher S. Nordahl, Huy Q. Nguyen, Ralph Korenstein
  • Patent number: 9064610
    Abstract: An apparatus includes a beta particle source configured to provide beta particles. The apparatus also includes a diamond moderator configured to convert at least some of the beta particles into lower-energy electrons. The apparatus further includes a PN junction configured to receive the electrons and to provide electrical power to a load. The diamond moderator is located between the beta particle source and the PN junction. The apparatus could also include an electron amplifier configured to bias the diamond moderator. For example, the electron amplifier could be configured to receive some of the beta particles and to generate additional electrons that bias the diamond moderator. Also, the diamond moderator can be configured to receive the beta particles having energies that are spread out over a wider range including higher energies, and the diamond moderator can be configured to provide the electrons concentrated in a narrower range at lower energies.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: June 23, 2015
    Assignee: Raytheon Co.
    Inventors: Chae Deok Lee, Ralph Korenstein, Mary K. Herndon
  • Patent number: 8698161
    Abstract: A semiconductor structure is bonded directly to a diamond substrate by Van der Waal forces. The diamond substrate is formed by polishing a surface of diamond to a first degree of smoothness; forming a material, such as diamond, BeO, GaN, MgO, or SiO2 or other oxides, over the polished surface to provide an intermediate structure; and re-polishing the material formed on the intermediate structure to a second degree of smoothness smoother than the first degree of smoothness. The diamond is bonded to the semiconductor structure, such as GaN, by providing a structure having bottom surfaces of a semiconductor on an underlying material; forming grooves through the semiconductor and into the underlying material; separating semiconductor along the grooves into a plurality of separate semiconductor structures; removing the separated semiconductor structures from the underlying material; and contacting the bottom surface of at least one of the separated semiconductor structures to the diamond substrate.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 15, 2014
    Assignee: Raytheon Company
    Inventors: Ralph Korenstein, Mary K. Herndon, Chae Doek Lee
  • Publication number: 20130264907
    Abstract: An apparatus includes a beta particle source configured to provide beta particles. The apparatus also includes a diamond moderator configured to convert at least some of the beta particles into lower-energy electrons. The apparatus further includes a PN junction configured to receive the electrons and to provide electrical power to a load. The diamond moderator is located between the beta particle source and the PN junction. The apparatus could also include an electron amplifier configured to bias the diamond moderator. For example, the electron amplifier could be configured to receive some of the beta particles and to generate additional electrons that bias the diamond moderator. Also, the diamond moderator can be configured to receive the beta particles having energies that are spread out over a wider range including higher energies, and the diamond moderator can be configured to provide the electrons concentrated in a narrower range at lower energies.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: Raytheon Company
    Inventors: Chae Deok Lee, Ralph Korenstein, Mary K. Herndon
  • Patent number: 8450185
    Abstract: A semiconductor structure is bonded directly to a diamond substrate by Van der Waal forces. The diamond substrate is formed by polishing a surface of diamond to a first degree of smoothness; forming a material, such as diamond, BeO, GaN, MgO, or SiO2 or other oxides, over the polished surface to provide an intermediate structure; and re-polishing the material formed on the intermediate structure to a second degree of smoothness smoother than the first degree of smoothness. The diamond is bonded to the semiconductor structure, such as GaN, by providing a structure having bottom surfaces of a semiconductor on an underlying material; forming grooves through the semiconductor and into the underlying material; separating semiconductor along the grooves into a plurality of separate semiconductor structures; removing the separated semiconductor structures from the underlying material; and contacting the bottom surface of at least one of the separated semiconductor structures to the diamond substrate.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: May 28, 2013
    Assignee: Raytheon Company
    Inventors: Ralph Korenstein, Mary K. Herndon, Chae Deok Lee
  • Publication number: 20120225536
    Abstract: A semiconductor structure is bonded directly to a diamond substrate by Van der Waal forces. The diamond substrate is formed by polishing a surface of diamond to a first degree of smoothness; forming a material, such as diamond, BeO, GaN, MgO, or SiO2 or other oxides, over the polished surface to provide an intermediate structure; and re-polishing the material formed on the intermediate structure to a second degree of smoothness smoother than the first degree of smoothness. The diamond is bonded to the semiconductor structure, such as GaN, by providing a structure having bottom surfaces of a semiconductor on an underlying material; forming grooves through the semiconductor and into the underlying material; separating semiconductor along the grooves into a plurality of separate semiconductor structures; removing the separated semiconductor structures from the underlying material; and contacting the bottom surface of at least one of the separated semiconductor structures to the diamond substrate.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 6, 2012
    Applicant: Raytheon Company
    Inventors: Ralph Korenstein, Mary K. Herndon, Chae Deok Lee
  • Publication number: 20120153294
    Abstract: A semiconductor structure is bonded directly to a diamond substrate by Van der Waal forces. The diamond substrate is formed by polishing a surface of diamond to a first degree of smoothness; forming a material, such as diamond, BeO, GaN, MgO, or SiO2 or other oxides, over the polished surface to provide an intermediate structure; and re-polishing the material formed on the intermediate structure to a second degree of smoothness smoother than the first degree of smoothness. The diamond is bonded to the semiconductor structure, such as GaN, by providing a structure having bottom surfaces of a semiconductor on an underlying material; forming grooves through the semiconductor and into the underlying material; separating semiconductor along the grooves into a plurality of separate semiconductor structures; removing the separated semiconductor structures from the underlying material; and contacting the bottom surface of at least one of the separated semiconductor structures to the diamond substrate.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: RAYTHEON COMPANY
    Inventors: Ralph Korenstein, Mary K. Herndon, Chae Deok Lee
  • Patent number: 8174024
    Abstract: In one aspect, a device includes a gallium nitride (GaN) layer, a first diamond layer disposed on the GaN layer, a gate structure disposed in contact with the GaN layer and the first diamond layer, and a second diamond layer having a first thermal conductivity and disposed on a second surface of the GaN layer. The gate and the first diamond layer are disposed on a first surface of the GaN layer opposite the second surface of the GaN layer.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: May 8, 2012
    Assignee: Raytheon Company
    Inventors: Ralph Korenstein, Steven D. Bernstein, Stephen J. Pereira
  • Publication number: 20110241018
    Abstract: In one aspect, a method includes fabricating a device. The device includes a gallium nitride (GaN) layer, a diamond layer disposed on the GaN layer and a gate structure disposed in contact with the GaN layer and the diamond layer. In another aspect, a device includes a gallium nitride (GaN) layer, a diamond layer disposed on the GaN layer and a gate structure disposed in contact with the GaN layer and the diamond layer.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 6, 2011
    Applicant: Raytheon Company
    Inventors: Ralph Korenstein, Steven D. Bernstein, Stephen J. Pereira
  • Patent number: 7989261
    Abstract: In one aspect, a method includes fabricating a device. The device includes a gallium nitride (GaN) layer, a diamond layer disposed on the GaN layer and a gate structure disposed in contact with the GaN layer and the diamond layer. In another aspect, a device includes a gallium nitride (GaN) layer, a diamond layer disposed on the GaN layer and a gate structure disposed in contact with the GaN layer and the diamond layer.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: August 2, 2011
    Assignee: Raytheon Company
    Inventors: Ralph Korenstein, Steven D. Bernstein, Stephen J. Pereira