Patents by Inventor Randal Mills

Randal Mills has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9398948
    Abstract: The present invention is directed to a composition comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. Also disclosed is a tissue graft or implant comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. The composition and/or tissue graft or implant of the invention is usable in combination with seeded cells, a tissue growth factor, and/or a chemotactic gent to attract a desired cell.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: July 26, 2016
    Assignee: RTI Surgical, Inc.
    Inventors: C. Randal Mills, John R. Bianchi, Michael R. Roberts, David T. Cheung, Chandrasekaran Nataraj, John W. Howell
  • Patent number: 9332750
    Abstract: This invention is a novel method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into and removal of undesirable factors from the pores of the implant, cleaning of the implant, efficient passivation of the implant (inactivation of pathogens, microorganisms, cells, viruses and the like and reduction in antigenicity thereof), and the novel implant produced by such treatment. The process presents a system wherein the rate of pressure cycling, the fact of pressure cycling, and the amplitude of pressure cycling, results in highly cleaned tissues and other implants for implantation.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: May 10, 2016
    Assignee: RTI Surgical, Inc.
    Inventors: C. Randal Mills, John F. Wironen, Sean Hanstke
  • Publication number: 20140257516
    Abstract: The present invention is directed to a composition comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. Also disclosed is a tissue graft or implant comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. The composition and/or tissue graft or implant of the invention is usable in combination with seeded cells, a tissue growth factor, and/or a chemotactic gent to attract a desired cell.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: RTI Surgical, Inc.
    Inventors: C. Randal Mills, John R. Bianchi, Michael R. Roberts, David T. Cheung, Chandrasekaran Nataraj, John W. Howell
  • Publication number: 20140193798
    Abstract: This invention is a novel method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into and removal of undesirable factors from the pores of the implant, cleaning of the implant, efficient passivation of the implant (inactivation of pathogens, microorganisms, cells, viruses and the like and reduction in antigenicity thereof), and the novel implant produced by such treatment. The process presents a system wherein the rate of pressure cycling, the fact of pressure cycling, and the amplitude of pressure cycling, results in highly cleaned tissues and other implants for implantation.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: RTI Surgical, Inc.
    Inventors: C. Randal Mills, John F. Wironen, Sean Hanstke
  • Patent number: 8747467
    Abstract: The present invention is directed to a composition comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. Also disclosed is a tissue graft or implant comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. The composition and/or tissue graft or implant of the invention is usable in combination with seeded cells, a tissue growth factor, and/or a chemotactic agent to attract a desired cell.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: June 10, 2014
    Assignee: RTI Surgical, Inc.
    Inventors: C. Randal Mills, John R. Bianchi, Michael R. Roberts, David T. Cheung, Chandrasekaran Nataraj, John W. Howell
  • Patent number: 8669043
    Abstract: A method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into and removal of undesirable factors from the pores of the implant, cleaning of the implant, efficient passivation of the implant, and the implant produced by such treatment. A system wherein the rate of pressure cycling, the fact of pressure cycling, and the amplitude of pressure cycling, results in highly cleaned tissues and other implants. Goals include between about a one to twelve log reduction in bacterial contamination, between about a one to fifteen log reduction in enveloped virus contamination, up to about a five log reduction in non-enveloped virus contamination, between about a two to tenfold reduction in endotoxin, maintenance of implant or graft biologic and biomechanical properties, absence of tissue toxicity due to cleaning solutions used, and reduced implant antigenicity.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 11, 2014
    Assignee: RTI Surgical, Inc.
    Inventors: C. Randal Mills, John F. Wironen, Sean Hanstke
  • Publication number: 20140056857
    Abstract: A bone implant comprising cancellous bone that is essentially free of blood cells, and which has been treated with at least a loosening agent, such as collagenase and/or a digestive enzyme, for a time and at a concentration to loosen the osteogenic cells in the cancellous bone matrix. The osteogenic cells in the matrix are viable cells. The treatment of the cancellous bone with at least one loosening agent enables the osteogenic cells to be more available for carrying our their osteogenic function and to provide for an increased rate of bone formation.
    Type: Application
    Filed: June 11, 2013
    Publication date: February 27, 2014
    Inventors: Michelle LeRoux Williams, Charles Randal Mills, Rodney Monroy
  • Publication number: 20140030235
    Abstract: A method of treating a genetic disease or disorder such as, for example, cystic fibrosis, Wilson's disease, amyotrophic lateral sclerosis, or polycystic kidney disease, in an animal comprising administering to said animal mesenchymal stem cells in an amount effective to treat the genetic disease or disorder in the animal.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: Osiris Therapeutics, Inc.
    Inventors: Timothy Varney, Charles Randal Mills, Alla Danilkovitch
  • Publication number: 20130149356
    Abstract: The present invention is directed to a composition comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. Also disclosed is a tissue graft or implant comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. The composition and/or tissue graft or implant of the invention is usable in combination with seeded cells, a tissue growth factor, and/or a chemotactic agent to attract a desired cell.
    Type: Application
    Filed: February 7, 2013
    Publication date: June 13, 2013
    Applicant: RTI BIOLOGICS, INC.
    Inventors: C. Randal Mills, John R. Bianchi, Michael R. Roberts, David T. Cheung, Chandrasekaran Nataraj, John W. Howell
  • Patent number: 8460860
    Abstract: A bone implant comprising cancellous bone that is essentially free of blood cells, and which has been treated with at least a loosening agent, such as collagenase and/or a digestive enzyme, for a time and at a concentration to loosen the osteogenic cells in the cancellous bone matrix. The osteogenic cells in the matrix are viable cells. The treatment of the cancellous bone with at least one loosening agent enables the osteogenic cells to be more available for carrying our their osteogenic function and to provide for an increased rate of bone formation.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: June 11, 2013
    Assignee: NuVasive, Inc.
    Inventors: Michelle LeRoux Williams, Charles Randal Mills, Rodney Monroy
  • Patent number: 8394141
    Abstract: The present invention is directed to a composition comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. Also disclosed is a tissue graft or implant comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. The composition and/or tissue graft or implant of the invention is usable in combination with seeded cells, a tissue growth factor, and/or a chemotactic gent to attract a desired cell.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: March 12, 2013
    Assignee: RTI Biologics, Inc.
    Inventors: C. Randal Mills, John R. Bianchi, Michael R. Roberts, David T. Cheung, Chandrasekaran Nataraj, John W. Howell
  • Publication number: 20120263687
    Abstract: A method of treating a genetic disease or disorder such as, for example, cystic fibrosis, Wilson's disease, amyotrophic lateral sclerosis, or polycystic kidney disease, in an animal comprising administering to said animal mesenchymal stem cells in an amount effective to treat the genetic disease or disorder in the animal.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Inventors: Timothy R. Varney, Charles Randal Mills, Alla Danilkovitch
  • Publication number: 20120214149
    Abstract: A method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into and removal of undesirable factors from the pores of the implant, cleaning of the implant, efficient passivation of the implant, and the implant produced by such treatment. A system wherein the rate of pressure cycling, the fact of pressure cycling, and the amplitude of pressure cycling, results in highly cleaned tissues and other implants. Goals include between about a one to twelve log reduction in bacterial contamination, between about a one to fifteen log reduction in enveloped virus contamination, up to about a five log reduction in non-enveloped virus contamination, between about a two to tenfold reduction in endotoxin, maintenance of implant or graft biologic and biomechanical properties, absence of tissue toxicity due to cleaning solutions used, and reduced implant antigenicity.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Inventors: C. Randal Mills, John F. Wironen, Sean Hanstke
  • Patent number: 8142991
    Abstract: This invention is a novel method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into and removal of undesirable factors from the pores of the implant, cleaning of the implant, efficient passivation of the implant (inactivation of pathogens, microorganisms, cells, viruses and the like and reduction in antigenicity thereof), and the novel implant produced by such treatment. The process presents a system wherein the rate of pressure cycling, the fact of pressure cycling, and the amplitude of pressure cycling, results in highly cleaned tissues and other implants for implantation.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: March 27, 2012
    Assignee: RTI Biologics, Inc.
    Inventors: C. Randal Mills, John F. Wironen, Sean Hanstke
  • Publication number: 20110305678
    Abstract: A method of treating a genetic disease or disorder such as, for example, cystic fibrosis, Wilson's disease, amyotrophic lateral sclerosis, or polycystic kidney disease, in an animal comprising administering to said animal mesenchymal stem cells in an amount effective to treat the genetic disease or disorder in the animal.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 15, 2011
    Inventors: Timothy Varney, Charles Randal Mills, Alla Danilkovitch
  • Publication number: 20110177045
    Abstract: A method of treating a genetic disease or disorder such as, for example, cystic fibrosis, Wilson's disease, amyotrophic lateral sclerosis, or polycystic kidney disease, in an animal comprising administering to said animal mesenchymal stem cells in an amount effective to treat the genetic disease or disorder in the animal.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 21, 2011
    Inventors: Timothy R. Varney, Charles Randal Mills, Alla Danilkovitch
  • Publication number: 20110091516
    Abstract: The present invention is directed to a composition comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. Also disclosed is a tissue graft or implant comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. The composition and/or tissue graft or implant of the invention is usable in combination with seeded cells, a tissue growth factor, and/or a chemotactic gent to attract a desired cell.
    Type: Application
    Filed: September 9, 2010
    Publication date: April 21, 2011
    Applicant: Regeneration Technologies, Inc.
    Inventors: C. Randal Mills, John R. Bianchi, Michael R. Roberts, David T. Cheung, Chandrasekaran Nataraj, John W. Howell, JR.
  • Patent number: 7883541
    Abstract: The present invention is directed to a composition comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. Also disclosed is a tissue graft or implant comprising a matrix suitable for implantation in humans, comprising defatted, shredded, allogeneic human muscle tissue that has been combined with an aqueous carrier and dried in a predetermined shape. The composition and/or tissue graft or implant of the invention is usable in combination with seeded cells, a tissue growth factor, and/or a chemotactic agent to attract a desired cell.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: February 8, 2011
    Assignee: RTI Biologics, Inc.
    Inventors: C. Randal Mills, John R. Bianchi, Michael R. Roberts, David T. Cheung, Chandrasekaran Nataraj, John W. Howell, Jr.
  • Publication number: 20100330052
    Abstract: A method of treating a genetic disease or disorder such as, for example, cystic fibrosis, Wilson's disease, amyotrophic lateral sclerosis, or polycystic kidney disease, in an animal comprising administering to said animal mesenchymal stem cells in an amount effective to treat the genetic disease or disorder in the animal.
    Type: Application
    Filed: September 2, 2010
    Publication date: December 30, 2010
    Inventors: Timothy R. Varney, Charles Randal Mills, Alla Danilkovitch
  • Publication number: 20100291047
    Abstract: A method of treating a genetic disease or disorder such as, for example, cystic fibrosis, Wilson's disease, amyotrophic lateral sclerosis, or polycystic kidney disease, in an animal comprising administering to said animal mesenchymal stem cells in an amount effective to treat the genetic disease or disorder in the animal.
    Type: Application
    Filed: July 28, 2010
    Publication date: November 18, 2010
    Inventors: Timothy R. Varney, Charles Randal Mills, Alla Danilkovitch