Patents by Inventor Randolph J. Smiley

Randolph J. Smiley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230287276
    Abstract: Systems and methods are provided for conversion of polymers (such as plastic waste) to olefins. The systems and methods can include a recycle loop so that a portion of the pyrolysis effluent can be combined with solid plastic feedstock. The input flow to the pyrolysis reactor can correspond to a slurry of plastic particles in recycled effluent or a solution of plastic in recycled effluent.
    Type: Application
    Filed: July 14, 2021
    Publication date: September 14, 2023
    Inventors: Bryan A. Patel, Randolph J Smiley, Saurabh S. Maduskar, Sundararajan Uppili, Michael W. Weber
  • Patent number: 11597885
    Abstract: Methods of refining a whole crude oil stream. The methods involve first processing the crude either through a hydrotreating reactor comprising a dewaxing reactor bed or a flash evaporation separator. The treated streams are then further processed through a demetalization reactor bed, a hydroprocessing reactor bed, or both. The stream can then be still further processed via additional hydrotreating, distillation, or both.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: March 7, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Xiaochun Xu, Xinrui Yu, Shifang Luo, Randolph J. Smiley, Joseph E. Gatt
  • Patent number: 11566189
    Abstract: This disclosure relates to new processes to produce high paraffinic diesel from crude oil, such as tight oil from the Permian basin. This disclosure also relates to high paraffinic diesel compositions and high paraffinic diesel blends.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: January 31, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Xinrui Yu, Shifang Luo, Xiaochun Xu, Randolph J. Smiley
  • Patent number: 11566188
    Abstract: Method of refining whole crude oil or a wide cut crude oil, the methods comprising a combination of a hydrotreating reactor, a distillation tower, and an optional flash evaporation separator. The methods can also include light ends processing, fluid catalytic cracking, reforming, hydrocracking, and demetalization. In some methods a whole crude oil is first processed through a flash evaporation separator to create a wide cut crude oil and in other methods, the flash evaporation separator is not used as the whole crude oil is first treated in a hydrotreater.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: January 31, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Xiaochun Xu, Xinrui Yu, Shifang Luo, Randolph J. Smiley, Hyung S. Woo
  • Publication number: 20220372375
    Abstract: Systems and methods are provided for co-processing of plastic waste in a coking environment or other thermal conversion environment. The co-processing of plastic waste in a coking environment can be performed by performing four types of processes on the plastic waste. The plastic waste can be conditioned by classifying and sizing of the plastic waste to improve the suitability of the plastic waste for co-processing. The conditioned plastic waste particles can be entrained and/or dissolved into a solvent and/or the base feed. The solution and/or slurry of plastic waste can be passed into a coking environment, such as a fluidized coking environment or a delayed coking environment. The plastic waste can then be co-processed in the coking environment to generate liquid product.
    Type: Application
    Filed: October 27, 2020
    Publication date: November 24, 2022
    Inventors: Bryan A. Patel, Randolph J. Smiley, Lawrence R. Gros, Mohsen N. Harandi
  • Patent number: 11485922
    Abstract: Kerosene boiling range or jet fuel boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting kerosene boiling range fractions can have an unexpected combination of a high naphthenes to aromatics weight ratio, a low but substantial aromatics content, and a low sulfur content. Such fractions can potentially be used as fuel after a reduced or minimized amount of additional refinery processing. By reducing, minimizing, or avoiding the amount of refinery processing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: November 1, 2022
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Daniel E. Kadlecek, Randolph J. Smiley, Gregory K. Lilik, Mike T. Noorman, Shifang Luo, Ian J. Laurenzi, Poturovic Jasmina
  • Patent number: 11485920
    Abstract: Hydroprocessed residual fuel and/or fuel blending components are provided that have a sulfur and nitrogen level comparable to liquefied natural gas (LNG). Because of the low starting level of sulfur and/or nitrogen, the severity of the hydroprocessing that is needed for the crude oil or bottoms fraction in order to remove sulfur to a level that is comparable to LNG is reduced or minimized. This can allow the resulting marine residual fuels to have low carbon intensity, low SOx and NOx emission and high energy density. Since the hydroprocessed fractions correspond to a fuel oil product, the resulting marine fuel can be used in existing fleets, and can be distributed in existing bunkering systems.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: November 1, 2022
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Kenneth C. H. Kar, Sheryl B. Rubin-Pitel, Shifang Luo, Randolph J. Smiley, Lisa M. Guay
  • Publication number: 20220195309
    Abstract: Systems and methods are provided for integration of a reactor for polyolefin pyrolysis with the effluent processing train for a steam cracker. The polyolefins can correspond to, for example, polyolefins in plastic waste. Integrating a process for polyolefin pyrolysis with a steam cracker processing train can allow a mixture of polymers to be converted to monomer units while reducing or minimizing costs and/or equipment footprint. This can allow for direct conversion of polyolefins to the light olefin monomers in high yield while significantly lowering capital and energy usage due to integration with a steam cracking process train. The integration can be enabled in part by selecting feeds with appropriate mixtures of various polymer types and/or by limiting the volume of the plastic waste pyrolysis product relative to the volume from the steam cracker(s) in the steam cracking process train.
    Type: Application
    Filed: June 12, 2020
    Publication date: June 23, 2022
    Inventors: Sundararajan Uppili, Bryan A. Patel, Randolph J. Smiley, Lawrence R. Gros, Anthony Go, Saurabh S. Maduskar, Melissa D. Foster, Philippe Laurent
  • Publication number: 20220025282
    Abstract: Methods of refining a whole crude oil stream. The methods involve first processing the crude either through a hydrotreating reactor comprising a dewaxing reactor bed or a flash evaporation separator. The treated streams are then further processed through a demetalization reactor bed, a hydroprocessing reactor bed, or both. The stream can then be still further processed via additional hydrotreating, distillation, or both.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 27, 2022
    Inventors: Xiaochun Xu, Xinrui Yu, Shifang Luo, Randolph J. Smiley, Joseph E. Gatt
  • Publication number: 20210363440
    Abstract: This disclosure relates to new processes to produce high paraffinic diesel from crude oil, such as tight oil from the Permian basin. This disclosure also relates to high paraffinic diesel compositions and high paraffinic diesel blends.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Xinrui Yu, Shifang Luo, Xiaochun Xu, Randolph J. Smiley
  • Publication number: 20210363439
    Abstract: Method of refining whole crude oil or a wide cut crude oil, the methods comprising a combination of a hydrotreating reactor, a distillation tower, and an optional flash evaporation separator. The methods can also include light ends processing, fluid catalytic cracking, reforming, hydrocracking, and demetalization. In some methods a whole crude oil is first processed through a flash evaporation separator to create a wide cut crude oil and in other methods, the flash evaporation separator is not used as the whole crude oil is first treated in a hydrotreater.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Xiaochun Xu, Xinrui Yu, Shifang Luo, Randolph J. Smiley, Hyung S. Woo
  • Publication number: 20210363448
    Abstract: Kerosene boiling range or jet fuel boiling range compositions are provided that are formed from crude oils with unexpected combinations of high naphthenes to aromatics weight and/or volume ratio and a low sulfur content. The resulting kerosene boiling range fractions can have an unexpected combination of a high naphthenes to aromatics weight ratio, a low but substantial aromatics content, and a low sulfur content. Such fractions can potentially be used as fuel after a reduced or minimized amount of additional refinery processing. By reducing, minimizing, or avoiding the amount of refinery processing needed to meet fuel and/or fuel blending product specifications, the fractions derived from the high naphthenes to aromatics ratio and low sulfur crudes can provide fuels and/or fuel blending products having a reduced or minimized carbon intensity.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Daniel E. Kadlecek, Randolph J. Smiley, Gregory K. Lilik, Mike T. Noorman, Shifang Luo, Ian J. Laurenzi, Poturovic Jasmina
  • Publication number: 20210363444
    Abstract: Hydroprocessed residual fuel and/or fuel blending components are provided that have a sulfur and nitrogen level comparable to liquefied natural gas (LNG). Because of the low starting level of sulfur and/or nitrogen, the severity of the hydroprocessing that is needed for the crude oil or bottoms fraction in order to remove sulfur to a level that is comparable to LNG is reduced or minimized. This can allow the resulting marine residual fuels to have low carbon intensity, low SOx and NOx emission and high energy density. Since the hydroprocessed fractions correspond to a fuel oil product, the resulting marine fuel can be used in existing fleets, and can be distributed in existing bunkering systems.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Inventors: Kenneth C.H. Kar, Sheryl B. Rubin-Pitel, Shifang Luo, Randolph J. Smiley, Lisa M. Guay
  • Patent number: 11118120
    Abstract: A method of upgrading refining streams with high polynucleararomatic hydrocarbon (PNA) concentrations can include: hydrocracking a PNA feed in the presence of a catalyst and hydrogen at 380° C. to 430° C., 2500 psig or greater, and 0.1 hr?1 to 5 hr?1 liquid hourly space velocity (LSHV), wherein the weight ratio of PNA feed to hydrogen is 30:1 to 10:1, wherein the PNA feed comprises 25 wt % or less of hydrocarbons having a boiling point of 700° F. (371° C.) or less and having an aromatic content of 50 wt % or greater to form a product comprising 50 wt % or greater of the hydrocarbons having a boiling point of 700° F. (371° C.) or less and having an aromatic content of 20 wt % or less.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 14, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stephen H. Brown, Samia Ilias, Randolph J. Smiley, Richard Demmin, Shifang Luo, Brenda A. Raich, Aldrin G. Cuevas, Keith Wilson, Jesse R. McManus, Lei Zhang
  • Patent number: 10870806
    Abstract: Systems and methods are provided for upgrading a mixture of catalytic slurry oil and coker bottoms by hydroprocessing. Optionally, the upgrading can further include deasphalting the mixture of catalytic slurry oil and coker bottoms to form a deasphalted oil and a deasphalter residue or rock fraction. The mixture of catalytic slurry oil and coker bottoms and/or the deasphalted oil can then be hydroprocessed to form an upgraded effluent that includes fuels boiling range products. Optionally, in some aspects where the feed mixture is deasphalted prior to hydroprocessing, the feed mixture can further include a portion of a (sour) vacuum resid.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: December 22, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen H. Brown, Brian A. Cunningham, Randolph J. Smiley, Samia Ilias, Brenda A. Raich, Tien V. Le
  • Patent number: 10752846
    Abstract: Systems and methods are provided for improving the processing of heavy or challenged feeds in a refinery based on integrated use of deasphalting, coking, and hydroprocessing. An optional fluid catalytic cracking unit can be included in the integrated system to allow for further improvements. The improved processing can be facilitated based on a process configuration where the vacuum resid fractions and/or other difficult fractions are deasphalted to generate a deasphalted oil and a deasphalter residue or rock fraction. The deasphalted oil can be passed into a hydroprocessing unit for further processing. The rock fraction can be used as the feed to a coking unit. Although deasphalter residue or rock is typically a feed with a high content of micro carbon residue, a high lift deasphalting process can allow a portion of the micro carbon residue in the initial feed to remain with the deasphalted oil.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: August 25, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Stephen H. Brown, Brian A. Cunningham, Randolph J. Smiley, Samia Ilias, Brenda A. Raich, Tien V. Le
  • Patent number: 10752849
    Abstract: Systems and methods are provided for upgrading catalytic slurry oil. The upgrading can be performed by deasphalting the catalytic slurry oil to form a deasphalted oil and a residual or rock fraction. The deasphalted oil can then be hydroprocessed to form an upgraded effluent that includes fuels boiling range products.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: August 25, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Stephen H. Brown, Brian A. Cunningham, Randolph J. Smiley, Samia Ilias, Keith K. Aldous, Sara K. Green, Patrick L. Hanks, Kendall S. Fruchey
  • Publication number: 20200199464
    Abstract: Systems and methods are provided for producing naphthenic compositions corresponding to various types of products, such as naphthenic base oil, specialty industrial oils, and/or hydrocarbon fluids. The methods of producing the naphthenic compositions can include exposing a heavy fraction from a fluid catalytic cracking (FCC) process, such as a FCC bottoms fraction (i.e., a catalytic slurry oil), to hydroprocessing conditions corresponding to hydrotreating and/or aromatic saturation conditions. Naphthenic compositions formed from processing of FCC fractions are also provided.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 25, 2020
    Inventors: Shifang Luo, Lei Zhang, Samia Ilias, Richard A. Demmin, Mark A. Deimund, Stephen H. Brown, Randolph J. Smiley, Larry E. Hoch, Daniel Bien, Shiwen Li
  • Publication number: 20200181497
    Abstract: A method for producing pitch can include: hydroprocessing a challenged feed from a refinery operation to produce a hydroprocessed product; distilling the hydroprocessed product to yield one or more upgraded fractions and a resid fraction; and solvent deasphalting the resid fraction to yield a deasphalted oil stream and a hydroprocessed pitch stream. The resultant pitch can have a micro carbon residue (MCR) of 50 wt % or greater, a solubility in toluene of 95 wt % or greater, and a softening point of 200° C. or less. The pitch can optionally be fluxed with a fluxing solvent.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Stephen H. Brown, G. Alan Vaughan, Patrick L. Hanks, Keith K. Aldous, Warren B. Ames, Federico Barrai, Samia Ilias, Randolph J. Smiley, David C. Boyer
  • Publication number: 20200181509
    Abstract: A method of upgrading refining streams with high polynucleararomatic hydrocarbon (PNA) concentrations can include: hydrocracking a PNA feed in the presence of a catalyst and hydrogen at 380° C. to 430° C., 2500 psig or greater, and 0.1 hr?1 to 5 hr?1 liquid hourly space velocity (LSHV), wherein the weight ratio of PNA feed to hydrogen is 30:1 to 10:1, wherein the PNA feed comprises 25 wt % or less of hydrocarbons having a boiling point of 700° F. (371° C.) or less and having an aromatic content of 50 wt % or greater to form a product comprising 50 wt % or greater of the hydrocarbons having a boiling point of 700° F. (371° C.) or less and having an aromatic content of 20 wt % or less.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Stephen H. Brown, Samia Ilias, Randolph J. Smiley, Richard Demmin, Shifang Luo, Brenda A. Raich, Aldrin G. Cuevas, Keith Wilson, Jesse R. McManus, Lei Zhang