Patents by Inventor Randy D. Cortright

Randy D. Cortright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9212328
    Abstract: The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: December 15, 2015
    Assignee: Virent, Inc.
    Inventors: John Kania, Ming Qiao, Elizabeth M. Woods, Randy D. Cortright, Paul Myren
  • Patent number: 9212320
    Abstract: Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C2+O1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C2+O1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: December 15, 2015
    Assignee: Virent, Inc.
    Inventors: Elizabeth M. Woods, Ming Qiao, Paul Myren, Randy D. Cortright, John Kania
  • Patent number: 9212104
    Abstract: The present invention provides processes for catalytic deconstruction of biomass using a solvent produced in a bioreforming reaction.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: December 15, 2015
    Assignee: Virent, Inc.
    Inventors: Ming Qiao, Randy D. Cortright, Elizabeth Woods
  • Publication number: 20150183694
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Application
    Filed: January 2, 2015
    Publication date: July 2, 2015
    Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
  • Patent number: 9045383
    Abstract: The present invention provides methods, reactor systems, and catalysts for converting in a continuous process biomass to less complex oxygenated compounds for use in downstream processes to produce biofuels and chemicals. The invention includes methods of converting the components of biomass, such as hemicellulose, cellulose and lignin, to water-soluble materials, including lignocellulosic derivatives, cellulosic derivatives, hemicellulosic derivatives, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, alditols, polyols, diols, alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof, using hydrogen and a heterogeneous liquefaction catalyst.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 2, 2015
    Assignee: Virent, Inc.
    Inventors: Ming Qiao, Randy D. Cortright, John Kania, Elizabeth Woods
  • Publication number: 20150133705
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Application
    Filed: December 26, 2014
    Publication date: May 14, 2015
    Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
  • Patent number: 8969640
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: March 3, 2015
    Assignee: Virent, Inc.
    Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
  • Patent number: 8962902
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: February 24, 2015
    Assignee: Virent, Inc.
    Inventors: Paul G. Blommel, Li Yuan, Matthew Van Straten, Warren Lyman, Randy D. Cortright
  • Patent number: 8933281
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: January 13, 2015
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Patent number: 8834587
    Abstract: Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 16, 2014
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Robert T. Rozmiarek, Charles C. Hornemann
  • Patent number: 8754263
    Abstract: Disclosed are methods for generating propylene glycol, ethylene glycol and other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols from biomass using hydrogen produced from the biomass. The methods involve reacting a portion of an aqueous stream of a biomass feedstock solution over a catalyst under aqueous phase reforming conditions to produce hydrogen, and then reacting the hydrogen and the aqueous feedstock solution over a catalyst to produce propylene glycol, ethylene glycol and the other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols. The disclosed methods can be run at lower temperatures and pressures, and allows for the production of oxygenated hydrocarbons without the need for hydrogen from an external source.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 17, 2014
    Assignee: Virent, Inc.
    Inventor: Randy D. Cortright
  • Patent number: 8710281
    Abstract: Disclosed are methods for producing polyols, ketones, carboxylic acids, aldehydes and alcohols from biomass-derived oxygenated hydrocarbons, such as sugars, sugar alcohols, saccharides and the like, using catalysts containing platinum, ruthenium and tin. The methods can be run at lower temperatures and pressures, and allows for the production of oxygenated compounds without the need for hydrogen from an external source. The oxygenated compounds produced are useful as industrial chemicals or chemical intermediates for liquid fuels production.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: April 29, 2014
    Assignee: Virent, Inc.
    Inventors: Dick Alan Nagaki, Randy D. Cortright, Lisa Kamke, Elizabeth Woods
  • Publication number: 20140107353
    Abstract: The present invention provides methods, reactor systems, and catalysts for converting in a continuous process biomass to less complex oxygenated compounds for use in downstream processes to produce biofuels and chemicals. The invention includes methods of converting the components of biomass, such as hemicellulose, cellulose and lignin, to water-soluble materials, including lignocellulosic derivatives, cellulosic derivatives, hemicellulosic derivatives, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, alditols, polyols, diols, alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof, using hydrogen and a heterogeneous liquefaction catalyst.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: Virent, Inc.
    Inventors: Ming Qiao, Randy D. Cortright, John Kania, Elizabeth Woods
  • Patent number: 8642813
    Abstract: The present invention provides methods, reactor systems, and catalysts for converting in a continuous process biomass to less complex oxygenated compounds for use in downstream processes to produce biofuels and chemicals. The invention includes methods of converting the components of biomass, such as hemicellulose, cellulose and lignin, to water-soluble materials, including lignocellulosic derivatives, cellulosic derivatives, hemicellulosic derivatives, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, alditols, polyols, diols, alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof, using hydrogen and a heterogeneous liquefaction catalyst.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: February 4, 2014
    Assignee: Virent, Inc.
    Inventors: Ming Qiao, Randy D. Cortright, John Kania, Elizabeth Woods
  • Publication number: 20130289302
    Abstract: Disclosed are methods for generating propylene glycol, ethylene glycol and other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols from biomass using hydrogen produced from the biomass. The methods involve reacting a portion of an aqueous stream of a biomass feedstock solution over a catalyst under aqueous phase reforming conditions to produce hydrogen, and then reacting the hydrogen and the aqueous feedstock solution over a catalyst to produce propylene glycol, ethylene glycol and the other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols. The disclosed methods can be run at lower temperatures and pressures, and allows for the production of oxygenated hydrocarbons without the need for hydrogen from an external source.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Inventor: Randy D. Cortright
  • Publication number: 20130261361
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Application
    Filed: May 22, 2013
    Publication date: October 3, 2013
    Inventors: Paul G. Blommel, Li Yuan, Matt Van Straten, Warren Lyman, Randy D. Cortright
  • Patent number: 8492595
    Abstract: Disclosed are methods for generating propylene glycol, ethylene glycol and other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols from biomass using hydrogen produced from the biomass. The methods involve reacting a portion of an aqueous stream of a biomass feedstock solution over a catalyst under aqueous phase reforming conditions to produce hydrogen, and then reacting the hydrogen and the aqueous feedstock solution over a catalyst to produce propylene glycol, ethylene glycol and the other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols. The disclosed methods can be run at lower temperatures and pressures, and allows for the production of oxygenated hydrocarbons without the need for hydrogen from an external source.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: July 23, 2013
    Assignee: Virent, Inc.
    Inventor: Randy D. Cortright
  • Patent number: 8455705
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons to aromatics and gasonline range hydrocarbons where the oxygenated hydrocarbons are derived from biomass.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 4, 2013
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Publication number: 20130131411
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting alkanols to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: Virent Energy Systems, Inc.
    Inventors: Paul G. Blommel, Li Yuan, Matt Van Straten, Warren Lyman, Randy D. Cortright
  • Patent number: 8410183
    Abstract: A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: April 2, 2013
    Assignees: Wisconsin Alumni Research Foundation, Virent, Inc.
    Inventors: Randy D. Cortright, James A. Dumesic