Patents by Inventor Randy D. Cortright

Randy D. Cortright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110245543
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 6, 2011
    Applicant: Virent Energy Systems, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Patent number: 8017818
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: September 13, 2011
    Assignee: Virent Energy Systems, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Patent number: 7989664
    Abstract: Disclosed are methods for generating propylene glycol, ethylene glycol and other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols from biomass using hydrogen produced from the biomass. The methods involve reacting a portion of an aqueous stream of a biomass feedstock solution over a catalyst under aqueous phase reforming conditions to produce hydrogen, and then reacting the hydrogen and the aqueous feedstock solution over a catalyst to produce propylene glycol, ethylene glycal and the other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols. The disclosed methods can be run at lower temperatures and pressures, and allows for the production of oxygenated hydrocarbons without the need for hydrogen from an external source.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 2, 2011
    Assignee: Virent Energy Systems, Inc.
    Inventor: Randy D. Cortright
  • Patent number: 7977517
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 12, 2011
    Assignee: Virent Energy Systems, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Publication number: 20110160482
    Abstract: Disclosed are methods for producing polyols, ketones, carboxylic acids, aldehydes and alcohols from biomass-derived oxygenated hydrocarbons, such as sugars, sugar alcohols, saccharides and the like, using catalysts containing platinum, ruthenium and tin. The methods can be run at lower temperatures and pressures, and allows for the production of oxygenated compounds without the need for hydrogen from an external source. The oxygenated compounds produced are useful as industrial chemicals or chemical intermediates for liquid fuels production.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 30, 2011
    Inventors: Dick Alan Nagaki, Randy D. Cortright, Lisa Kamke, Elizabeth Woods
  • Publication number: 20110086927
    Abstract: A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
    Type: Application
    Filed: December 8, 2010
    Publication date: April 14, 2011
    Inventors: Randy D. Cortright, James A. Dumesic
  • Patent number: 7872054
    Abstract: A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: January 18, 2011
    Assignees: Wisconsin Alumni Research Foundation, Virent Energy Systems
    Inventors: Randy D. Cortright, James A. Dumesic
  • Publication number: 20110009614
    Abstract: Processes and reactor systems are provided for the conversion of sugars to sugar alcohols using a hydrogenation catalyst, which includes apparatus and method for in-line regeneration of the hydrogenation catalyst to remove carbonaceous deposits.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 13, 2011
    Inventors: Paul George Blommel, Elizabeth M. Woods, Michael J. Werner, Aaron James Imrie, Randy D. Cortright
  • Publication number: 20100288975
    Abstract: Reactor systems are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.
    Type: Application
    Filed: December 20, 2007
    Publication date: November 18, 2010
    Inventors: Randy D. Cortright, Robert T. Rozmiarek, Charles C. Hornemann
  • Publication number: 20100280275
    Abstract: Disclosed are methods for generating propylene glycol, ethylene glycol and other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols from biomass using hydrogen produced from the biomass. The methods involve reacting a portion of an aqueous stream of a biomass feedstock solution over a catalyst under aqueous phase reforming conditions to produce hydrogen, and then reacting the hydrogen and the aqueous feedstock solution over a catalyst to produce propylene glycol, ethylene glycal and the other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols. The disclosed methods can be run at lower temperatures and pressures, and allows for the production of oxygenated hydrocarbons without the need for hydrogen from an external source.
    Type: Application
    Filed: July 12, 2010
    Publication date: November 4, 2010
    Inventor: Randy D. Cortright
  • Patent number: 7767867
    Abstract: Disclosed are methods for generating propylene glycol, ethylene glycol and other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols from biomass using hydrogen produced from the biomass. The methods involve reacting a portion of an aqueous stream of a biomass feedstock solution over a catalyst under aqueous phase reforming conditions to produce hydrogen, and then reacting the hydrogen and the aqueous feedstock solution over a catalyst to produce propylene glycol, ethylene glycal and the other polyols, diols, ketones, aldehydes, carboxylic acids and alcohols. The disclosed methods can be run at lower temperatures and pressures, and allows for the production of oxygenated hydrocarbons without the need for hydrogen from an external source.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: August 3, 2010
    Assignee: Virent Energy Systems, Inc.
    Inventor: Randy D. Cortright
  • Publication number: 20100076233
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to paraffins useful as liquid fuels. The process involves the conversion of water soluble oxygenated hydrocarbons to oxygenates, such as alcohols, furans, ketones, aldehydes, carboxylic acids, diols, triols, and/or other polyols, followed by the subsequent conversion of the oxygenates to paraffins by dehydration and alkylation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 25, 2010
    Inventors: Randy D. Cortright, Paul G. Blommel, Michael J. Werner, Matthew R. Vanstraten
  • Patent number: 7618612
    Abstract: Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: November 17, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Randy D. Cortright, James A. Dumesic
  • Publication number: 20090211942
    Abstract: Disclosed are catalysts and methods that can reform aqueous solutions of oxygenated compounds such as ethylene glycol, glycerol, sugar alcohols, and sugars to generate products such as hydrogen and alkanes. In some embodiments, aqueous solutions containing at least 20 wt % of the oxygenated compounds can be reformed over a catalyst comprising a Group VIII transition metal and a Group VIIB transition metal, preferably supported on an activated carbon-supported catalyst. In other embodiments, catalysts are provided for the production of hydrogen or alkanes at reaction temperatures less than 300° C.
    Type: Application
    Filed: December 18, 2006
    Publication date: August 27, 2009
    Inventors: Randy D. Cortright, Nicholas W. Vollendorf, Charles C. Hornemann, Shawn P. McMahon
  • Publication number: 20080300434
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Application
    Filed: March 7, 2008
    Publication date: December 4, 2008
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Publication number: 20080300435
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Application
    Filed: March 7, 2008
    Publication date: December 4, 2008
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Publication number: 20080216391
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 11, 2008
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Publication number: 20070225383
    Abstract: A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 27, 2007
    Inventors: Randy D. Cortright, James A. Dumesic
  • Patent number: 6964758
    Abstract: Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as glycerol, glucose, or sorbitol. The method can take place in the vapor phase or in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon having at least two carbon atoms, in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIII transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: November 15, 2005
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Randy D. Cortright, James A. Dumesic
  • Patent number: 6964757
    Abstract: Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: November 15, 2005
    Assignee: Wisconsin Alumni Research
    Inventors: Randy D. Cortright, James A. Dumesic