Patents by Inventor Ravi Pillarisetty

Ravi Pillarisetty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200235163
    Abstract: Disclosed herein are selector devices and related devices and techniques. In some embodiments, a selector device may include a first electrode, a second electrode, and a selector material between the first electrode and the second electrode. The selector material may include germanium, tellurium, and sulfur.
    Type: Application
    Filed: September 14, 2017
    Publication date: July 23, 2020
    Applicant: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi, Abhishek A. Sharma
  • Publication number: 20200235105
    Abstract: A 2T-2S SRAM cell exhibiting a complementary scheme, that includes two selector devices that exhibit negative differential resistance. Advantages include lower area and better performance than traditional SRAM cells, according to some embodiments. The term 1T-1S refers to a transistor in series with a selector device. Accordingly, the term 2T-2S refers to two such 1T-1S structures.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 23, 2020
    Applicant: INTEL CORPORATION
    Inventors: Abhishek A. Sharma, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi
  • Publication number: 20200227568
    Abstract: Embodiments herein describe techniques for a semiconductor device, which may include a substrate, and a U-shaped channel above the substrate. The U-shaped channel may include a channel bottom, a first channel wall and a second channel wall parallel to each other, a source area, and a drain area. A gate dielectric layer may be above the substrate and in contact with the channel bottom. A gate electrode may be above the substrate and in contact with the gate dielectric layer. A source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 16, 2020
    Inventors: Van H. LE, Abhishek A. SHARMA, Benjamin CHU-KUNG, Gilbert DEWEY, Ravi PILLARISETTY, Miriam R. RESHOTKO, Shriram SHIVARAMAN, Li Huey TAN, Tristan A. TRONIC, Jack T. KAVALIEROS
  • Publication number: 20200227396
    Abstract: The electrical and electrochemical properties of various semiconductors may limit the usefulness of various semiconductor materials for one or more purposes. A completed gallium nitride (GaN) semiconductor layer containing a number of GaN power management integrated circuit (PMIC) dies may be bonded to a completed silicon semiconductor layer containing a number of complementary metal oxide (CMOS) control circuit dies. The completed GaN layer and the completed silicon layer may be full size (e.g., 300 mm). A layer transfer operation may be used to bond the completed GaN layer to the completed silicon layer. The layer transfer operation may be performed on full size wafers. After slicing the full size wafers a large number of multi-layer dies, each having a GaN die layer transferred to a silicon die may be produced.
    Type: Application
    Filed: September 24, 2015
    Publication date: July 16, 2020
    Applicant: Intel Corporation
    Inventors: Sansaptak W. DASGUPTA, Marko RADOSAVLJEVIC, Han Wui THEN, Ravi PILLARISETTY, Kimin JUN, Patrick MORROW, Valluri R. RAO, Paul B. FISCHER, Robert S. CHAU
  • Publication number: 20200227477
    Abstract: Embedded non-volatile memory structures having selector elements with ballast are described. In an example, a memory device includes a word line. A selector element is above the word line. The selector element includes a selector material layer and a ballast material layer different than the selector material layer. A bipolar memory element is above the word line. A conductive electrode is between the elector element and the bipolar memory element. A bit line is above the word line.
    Type: Application
    Filed: September 13, 2017
    Publication date: July 16, 2020
    Inventors: Prashant MAJHI, Ravi PILLARISETTY, Elijah V. KARPOV, Brian S. DOYLE, Abhishek A. SHARMA
  • Patent number: 10714604
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin includes a quantum well layer; a first dielectric material around a bottom portion of the fin; and a second dielectric material around a top portion of the fin, wherein the second dielectric material is different from the first dielectric material.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: July 14, 2020
    Assignee: Intel Corporation
    Inventors: Hubert C. George, David J. Michalak, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Zachary R. Yoscovits, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, Jeanette M. Roberts
  • Publication number: 20200220023
    Abstract: An embodiment includes a system comprising: a thin film transistor (TFT) comprising a source, a channel, a drain, and a gate; first, second, and third dielectric portions; wherein (a) a first vertical axis intersects the source, the channel, and the drain; (b) the first dielectric portion surrounds the source in a first plane; (c) the second dielectric portion surrounds the channel in a second plane; (d) the third dielectric surrounds the drain in a third plane; (e) a second vertical axis intersects the first, second, and third dielectric portions; (f) the source includes a first dopant, the first dielectric portion includes the first dopant, the second dielectric portion includes at least one of the first dopant and a second dopant, the drain includes the at least one of the first and second dopants, and the third dielectric portion includes the at least one of the first and second dopants.
    Type: Application
    Filed: January 4, 2018
    Publication date: July 9, 2020
    Inventors: Ravi Pillarisetty, Prashant Majhi, Seung Hoon Sung, Willy Rachmady, Gilbert Dewey, Abhishek A. Sharma, Brian S. Doyle, Jack T. Kavalieros
  • Patent number: 10706921
    Abstract: One embodiment provides an apparatus. The apparatus includes a bipolar junction transistor (BJT) and an integrated resistive element. The BJT includes a base contact, a base region, a collector contact, a collector region and an integrated emitter contact. The integrated resistive element includes a resistive layer and an integrated electrode. The resistive element is positioned between the base region and the integrated emitter contact.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: July 7, 2020
    Assignee: INTEL CORPORATION
    Inventors: Elijah V. Karpov, Ravi Pillarisetty, Prashant Majhi, Niloy Mukherjee, Uday Shah
  • Publication number: 20200212105
    Abstract: Embedded non-volatile memory structures having asymmetric selector elements are described. In an example, a memory device includes a word line. An asymmetric selector element is above the word line. The asymmetric selector element includes a first electrode material layer, a selector material layer on the first electrode material layer, and a second electrode material layer on the selector material layer, the second electrode material layer different in composition than the first electrode material layer. A bipolar memory element is above the word line, the bipolar memory element on the asymmetric selector element. A bit line is above the word line.
    Type: Application
    Filed: September 27, 2017
    Publication date: July 2, 2020
    Inventors: Prashant MAJHI, Abhishek A. SHARMA, Elijah V. KARPOV, Ravi PILLARISETTY, Brian S. DOYLE
  • Publication number: 20200212075
    Abstract: Thin film transistors having relatively increased width and shared bitlines are described. In an example, an integrated circuit structure includes a plurality of transistors formed in an insulator structure above a substrate. The plurality of transistors arranged in a column such that the respective lateral arrangement of the source, the gate, and the drain of each of the transistors aligns with an adjacent thin film transistor, wherein the plurality transistors extend vertically through the insulator structure at least two interconnect levels to provide increased relative width. A first conductive contact is formed between one of sources and drains of at least two of the plurality of transistors in the column, and the conductive contact extends through the insulator structure at least two interconnect levels.
    Type: Application
    Filed: September 26, 2017
    Publication date: July 2, 2020
    Inventors: Brian S. DOYLE, Abhishek A. SHARMA, Ravi PILLARISETTY, Prashant MAJHI, Elijah V. KARPOV
  • Publication number: 20200212210
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin includes a quantum well layer; an insulating material at least partially above the fin, wherein the insulating material includes a trench above the fin; and a gate metal on the insulating material and extending into the trench.
    Type: Application
    Filed: December 21, 2017
    Publication date: July 2, 2020
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Nicole K. Thomas, Hubert C. George, Jeanette M. Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke
  • Publication number: 20200203604
    Abstract: Disclosed herein are metal filament memory cells, and related devices and techniques. In some embodiments, a memory cell may include: a transistor having a source/drain region; and a metal filament memory device including an active metal and an electrolyte; wherein the electrolyte is coupled between the active metal and the source/drain region when the transistor is an n-type metal oxide semiconductor (NMOS) transistor, and the active metal is coupled between the electrolyte and the source/drain region when the transistor is a p-type metal oxide semiconductor (PMOS) transistor.
    Type: Application
    Filed: September 25, 2016
    Publication date: June 25, 2020
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Elijah V. Karpov, Prashant Majhi, Niloy Mukherjee
  • Publication number: 20200202918
    Abstract: Disclosed herein are thyristors and related devices and techniques. In some embodiments, an integrated circuit (IC) device may include a metal portion and a thyristor on the metal portion. The thyristor may include a stack of alternating p-type and n-type material layers, and the stack may be on the metal portion.
    Type: Application
    Filed: September 14, 2017
    Publication date: June 25, 2020
    Applicant: Intel Corporation
    Inventors: Van H. Le, Abhishek A. Sharma, Ravi Pillarisetty
  • Publication number: 20200203432
    Abstract: Embodiments herein describe techniques for a semiconductor device including a semiconductor substrate, a first device of a first wafer, and a second device at back end of a second wafer, where the first device is bonded with the second device. A first metal electrode of the first device within a first dielectric layer is coupled to an n-type oxide TFT having a channel layer that includes an oxide semiconductor material. A second metal electrode of the second device within a second dielectric layer is coupled to p-type organic TFT having a channel layer that includes an organic material. The first dielectric layer is bonded to the second dielectric layer, and the first metal electrode is bonded to the second metal electrode. The n-type oxide TFT and the p-type organic TFT form a symmetrical pair of transistors of a CMOS circuit. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Inventors: Willy RACHMADY, Prashant MAJHI, Ravi PILLARISETTY, Elijah KARPOV, Brian DOYLE, Anup PANCHOLI, Abhishek SHARMA
  • Publication number: 20200203593
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a substrate and a quantum well stack disposed on the substrate. The quantum well stack may include a quantum well layer and a back gate, and the back gate may be disposed between the quantum well layer and the substrate.
    Type: Application
    Filed: June 9, 2016
    Publication date: June 25, 2020
    Applicant: Intel Corporation
    Inventors: Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Zachary R. Yoscovits, James S. Clarke, Van H. Le
  • Patent number: 10693008
    Abstract: An apparatus including a semiconductor body including a channel region and junction regions disposed on opposite sides of the channel region, the semiconductor body including a first material including a first band gap; and a plurality of nanowires including a second material including a second band gap different than the first band gap, the plurality of nanowires disposed in separate planes extending through the first material so that the first material surrounds each of the plurality of nanowires; and a gate stack disposed on the channel region. A method including forming a plurality of nanowires in separate planes above a substrate, each of the plurality of nanowires including a material including a first band gap; individually forming a cladding material around each of the plurality of nanowires, the cladding material including a second band gap; coalescing the cladding material; and disposing a gate stack on the cladding material.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: June 23, 2020
    Assignee: Intel Corporation
    Inventors: Niloy Mukherjee, Marko Radosavljevic, Jack T. Kavalieros, Ravi Pillarisetty, Niti Goel, Van H. Le, Gilbert Dewey, Benjamin Chu-Kung
  • Publication number: 20200194566
    Abstract: Systems, apparatus, and methods for initializing spin qubits with no external magnetic fields are described. An apparatus for quantum computing includes a quantum well and a pair of contacts. At least one of the contacts is formed of a ferromagnetic material. One of the contacts in the pair of contacts interfaces with a semiconductor material at a first position adjacent to the quantum well and the other contact in the pair of contacts interfaces with the semiconductor material at a second position adjacent to the quantum well. The ferromagnetic material initializes an electron or hole with a spin state prior to injection into the quantum well.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 18, 2020
    Applicant: INTEL CORPORATION
    Inventors: Sasikanth MANIPATRUNI, Ravi PILLARISETTY, Dmitri E. NIKONOV, Ian A. YOUNG, James S. CLARKE
  • Patent number: 10686007
    Abstract: Embodiments of the present disclosure propose quantum circuit assemblies with transmission lines and/or capacitors that include layer-conductors oriented perpendicular to a substrate (i.e. oriented vertically) or a qubit die, with at least portions of the vertical layer-conductors being at least partially buried in the substrate. Such layer-conductors may form ground and signal planes of transmission lines or capacitor plates of capacitors of various quantum circuit assemblies.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: June 16, 2020
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Adel A. Elsherbini, Lester Lampert, James S. Clarke, Ravi Pillarisetty, Zachary R. Yoscovits, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts
  • Publication number: 20200185457
    Abstract: Disclosed herein are selector devices and related devices and techniques. In some embodiments, a selector device may include a first electrode, a second electrode, and a selector material between the first electrode and the second electrode. The selector material may include a dielectric material and a conductive dopant.
    Type: Application
    Filed: August 29, 2017
    Publication date: June 11, 2020
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Ravi Pillarisetty, Van H. Le, Gilbert W. Dewey, Willy Rachmady
  • Publication number: 20200176457
    Abstract: A ferroelectric field-effect transistor (FeFET) includes first and second gate electrodes, source and drain regions, a semiconductor region between and physically connecting the source and drain regions, a first gate dielectric between the semiconductor region and the first gate electrode, and a second gate dielectric between the semiconductor region and the second gate electrode. The first gate dielectric includes a ferroelectric dielectric. In an embodiment, a memory cell includes this FeFET, with the first gate electrode being electrically connected to a wordline and the drain region being electrically connected to a bitline. In another embodiment, a memory array includes wordlines extending in a first direction, bitlines extending in a second direction, and a plurality of such memory cells at crossing regions of the wordlines and the bitlines. In each memory cell, the wordline is a corresponding one of the wordlines and the bitline is a corresponding one of the bitlines.
    Type: Application
    Filed: September 29, 2017
    Publication date: June 4, 2020
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi, Elijah V. Karpov