Patents by Inventor Ravi Pillarisetty

Ravi Pillarisetty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10930500
    Abstract: III-N semiconductor heterostructures including a raised III-N semiconductor structures with inclined sidewall facets are described. In embodiments, lateral epitaxial overgrowth favoring semi-polar inclined sidewall facets is employed to bend crystal defects from vertical propagation to horizontal propagation. In embodiments, arbitrarily large merged III-N semiconductor structures having low defect density surfaces may be overgrown from trenches exposing a (100) surface of a silicon substrate. III-N devices, such as III-N transistors, may be further formed on the raised III-N semiconductor structures while silicon-based transistors may be formed in other regions of the silicon substrate.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Benjamin Chu-Kung, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20210036110
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer, wherein the quantum well layer includes an isotopically purified material; a gate dielectric above the quantum well stack; and a gate metal above the gate dielectric, wherein the gate dielectric is between the quantum well layer and the gate metal.
    Type: Application
    Filed: December 17, 2017
    Publication date: February 4, 2021
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Ravi Pillarisetty, Kanwaljit Singh, Payam Amin, Hubert C. George, Jeanette M. Roberts, Roman Caudillo, David J. Michalak, Zachary R. Yoscovits, Lester Lampert
  • Patent number: 10910488
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin has a first side face and a second side face, and the fin includes a quantum well layer; and a gate above the fin, wherein the gate extends down along the first side face.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: February 2, 2021
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Lester Lampert, James S. Clarke, Ravi Pillarisetty, Zachary R. Yoscovits, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts
  • Patent number: 10910436
    Abstract: Disclosed herein are asymmetric selectors for memory cells, and related devices and techniques. In some embodiments, a memory cell may include: a storage element; and a selector device coupled to the storage element, wherein the selector device has a positive threshold voltage and a negative threshold voltage, and a magnitude of the positive threshold voltage is different from a magnitude of the negative threshold voltage.
    Type: Grant
    Filed: September 24, 2016
    Date of Patent: February 2, 2021
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Prashant Majhi, Ravi Pillarisetty, Niloy Mukherjee
  • Patent number: 10910556
    Abstract: Described is an apparatus which comprises: a heat spreading layer; a first transition metal layer adjacent to the heat spreading layer; and a magnetic recording layer adjacent to the first transition metal layer. Described is an apparatus which comprises: a first electrode; a magnetic junction having a free magnet; and one or more layers of Jahn-Teller material adjacent to the first electrode and the free magnet of the magnetic junction.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: February 2, 2021
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Ian A. Young, Dmitri E. Nikonov, Ravi Pillarisetty, Uygar E. Avci
  • Patent number: 10897009
    Abstract: Resistive memory cells, precursors thereof, and methods of making resistive memory cells are described. In some embodiments, the resistive memory cells are formed from a resistive memory precursor that includes a switching layer precursor containing a plurality of oxygen vacancies that are present in a controlled distribution therein, optionally without the use of an oxygen exchange layer. In these or other embodiments, the resistive memory precursors described may include a second electrode formed on a switching layer precursor, wherein the second electrode is includes a second electrode material that is conductive but which does not substantially react with oxygen. Devices including resistive memory cells are also described.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: January 19, 2021
    Assignee: Intel Corporation
    Inventors: Niloy Mukherjee, Ravi Pillarisetty, Prashant Majhi, Uday Shah, Ryan E Arch, Markus Kuhn, Justin S. Brockman, Huiying Liu, Elijah V Karpov, Kaan Oguz, Brian S. Doyle, Robert S. Chau
  • Publication number: 20210013208
    Abstract: Disclosed herein are gated thyristors and related devices and techniques. In some embodiments, an integrated circuit (IC) device may include a metal portion and a gated thyristor on the metal portion. The gated thyristor may include a stack of alternating p-type and n-type material layers, and the stack may be on the metal portion. The IC device may further include a gate line spaced apart from one of the material layers by a gate dielectric.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 14, 2021
    Applicant: Intel Corporation
    Inventors: Van H. Le, Ravi Pillarisetty, Abhishek A. Sharma
  • Patent number: 10879446
    Abstract: Embodiments of the present disclosure relate to quantum circuit assemblies implementing superconducting qubits, e.g., transmons, in which SQUID loops and portions of FBLs configured to magnetically couple to the SQUID loops extend substantially vertically. In contrast to conventional implementations, for a vertical SQUID according to various embodiments of the present disclosure, a line that is perpendicular to the SQUID loop is parallel to the qubit substrate. A corresponding FBL is also provided in a vertical arrangement, in order to achieve efficient magnetic coupling to the vertical SQUID loop, by ensuring that at least a portion of the FBL designed to conduct current responsible for generating magnetic field for tuning qubit frequency is substantially perpendicular to the substrate.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Roman Caudillo, Lester Lampert, David J. Michalak, Jeanette M. Roberts, Ravi Pillarisetty, Hubert C. George, Nicole K. Thomas, James S. Clarke
  • Publication number: 20200403137
    Abstract: Embodiments of the present disclosure describe integrated quantum circuit assemblies that include quantum circuit components pre-packaged, or integrated, with some other electronic components and mechanical attachment means for easy inclusion within a cooling apparatus. An example integrated quantum circuit assembly includes a package and mechanical attachment means for securing the package within a cryogenic chamber of a cooling apparatus. The package includes a plurality of components, such as a quantum circuit component, an attenuator, and a directional coupler, which are integral to the package. Such an integrated assembly may significantly speed up installation and may help develop systems for rapidly bringing up quantum computers.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 24, 2020
    Inventors: Lester Lampert, Ravi Pillarisetty, Nicole K. Thomas, Hubert C. George, Jeanette M. Roberts, David J. Michalak, Roman Caudillo, Thomas Francis Watson, Stephanie A. Bojarski, James S. Clarke
  • Patent number: 10872660
    Abstract: In one embodiment, systems, methods, and apparatus are described that can reduce the peak current through semiconductor memory devices such as RRAM devices. In one embodiment, transition metal dichalcogenide (TMD) materials can be used to in connection with both the transistors and the memory (for example, RRAM) devices. In one embodiment, two-dimensional (2D) materials, that is, materials that are on the order of a few angstroms thick can be used in connection with both the transistors and the memory (for example, RRAM) devices. In one embodiment, the TMD layer(s) and/or the 2D material(s) can act as a ballast to the RRAM device that can control the current flow through the RRAM device. In one embodiment, the systems, methods, and apparatus can serve to reduce the current as the voltage increases at a predetermined range, a property that can be referred to as negative differential resistance (NDR).
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: December 22, 2020
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Ravi Pillarisetty, Van H. Le, Gilbert Dewey
  • Publication number: 20200388711
    Abstract: Transistor structures with a deposited channel semiconductor material may have a vertical structure that includes a gate dielectric material that is localized to a sidewall of a gate electrode material layer. With localized gate dielectric material threshold voltage variation across a plurality of vertical transistor structures, such as a NAND flash memtory string, may be reduced. A via may be formed through a material stack, exposing a sidewall of the gate electrode material layer and sidewalls of the dielectric material layers. A sidewall of the gate electrode material layer may be recessed selectively from the sidewalls of the dielectric material layers. A gate dielectric material, such as a ferroelectric material, may be selectively deposited upon the recessed gate electrode material layer, for example at least partially backfilling the recess. A semiconductor material may be deposited on sidewalls of the dielectric material layers and on the localized gate dielectric material.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 10, 2020
    Inventors: Brian Doyle, Rami Hourani, Elijah Karpov, Prashant Majhi, Ravi Pillarisetty, Abhishek Sharma
  • Patent number: 10850977
    Abstract: Techniques are disclosed for forming group III material-nitride (III-N) microelectromechanical systems (MEMS) structures on a group IV substrate, such as a silicon, silicon germanium, or germanium substrate. In some cases, the techniques include forming a III-N layer on the substrate and optionally on shallow trench isolation (STI) material, and then releasing the III-N layer by etching to form a free portion of the III-N layer suspended over the substrate. The techniques may include, for example, using a wet etch process that selectively etches the substrate and/or STI material, but does not etch the III-N material (or etches the III-N material at a substantially slower rate). Piezoresistive elements can be formed on the III-N layer to, for example, detect vibrations or deflection in the free/suspended portion of the III-N layer. Accordingly, MEMS sensors can be formed using the techniques, such as accelerometers, gyroscopes, and pressure sensors, for example.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 1, 2020
    Assignee: INTEL CORPORATION
    Inventors: Han Wui Then, Sansaptak Dasgupta, Sanaz K. Gardner, Ravi Pillarisetty, Marko Radosavljevic, Seung Hoon Sung, Robert S. Chau
  • Publication number: 20200373351
    Abstract: Embodiments of the present disclosure propose qubit substrates, as well as methods of fabricating thereof and related device assemblies. In one aspect of the present disclosure, a qubit substrate includes a base substrate of a doped semiconductor material, and a layer of a substantially intrinsic semiconductor material over the base substrate. Engineering a qubit substrate in this manner allows improving coherence times of qubits provided thereon, while, at the same time, being sufficiently mechanically robust so that it can be efficiently used in large-scale manufacturing.
    Type: Application
    Filed: September 18, 2017
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Jeanette M. Roberts, Wesley T. Harrison, Adel A. Elsherbini, Stefano Pellerano, Zachary R. Yoscovits, Lester Lampert, Ravi Pillarisetty, Roman Caudillo, Hubert C. George, Nicole K. Thomas, David J. Michalak, Kanwaljit Singh, James S. Clarke
  • Patent number: 10847705
    Abstract: Embodiments of the present disclosure describe two approaches to providing flux bias line structures for superconducting qubit devices. The first approach, applicable to flux bias line structures that include at least one portion that terminates with a ground connection, resides in terminating such a portion with a ground connection that is electrically isolated from the common ground plane of a quantum circuit assembly. The second approach resides in providing a SQUID loop of a superconducting qubit device and a portion of the flux bias line structure over a portion of a substrate that is elevated with respect to other portions of the substrate. These approaches may be used or alone or in combination, and may improve grounding of and reduce crosstalk caused by flux bias lines in quantum circuit assemblies.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Lester Lampert, Adel A. Elsherbini, James S. Clarke, Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Kanwaljit Singh, Roman Caudillo, Zachary R. Yoscovits, Nicole K. Thomas, Hubert C. George, Stefano Pellerano
  • Publication number: 20200365656
    Abstract: Disclosed herein are quantum dot devices and techniques. In some embodiments, a quantum computing processing device may include a quantum well stack, an array of quantum dot gate electrodes above the quantum well stack, and an associated array of selectors above the array of quantum dot gate electrodes. The array of quantum dot gate electrodes and the array of selectors may each be arranged in a grid.
    Type: Application
    Filed: September 28, 2017
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Nicole K. Thomas, Abhishek A. Sharma, Hubert C. George, Jeanette M. Roberts, Zachary R. Yoscovits, Roman Caudillo, Kanwaljit Singh, James S. Clarke
  • Publication number: 20200365688
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; an insulating material disposed above the quantum well stack, wherein the insulating material includes a trench; and a gate metal disposed on the insulating material and extending into the trench.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Jeanette M. Roberts, Nicole K. Thomas, James S. Clarke
  • Patent number: 10840431
    Abstract: An embodiment includes an apparatus comprising: a memory array comprising: a selector switch including top and bottom electrodes, a metal layer, and a solid electrolyte layer; a memory cell in series with the selector switch; bit and write lines, wherein (a) (i) the top electrode couples to one of the bit and write lines and the bottom electrode couples to another of the bit and write lines, and (a) (ii) the memory cell is between one of the top and bottom electrodes and one of the bit and write lines; wherein (b) (i) the metal layer includes silver (Ag), and (b) (ii) Ag ions from the metal layer form a conductive path in the SE layer when the top electrode is biased and disband the conductive path when the top electrode is not biased. Other embodiments Electrode are described herein.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 17, 2020
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Ravi Pillarisetty, Prashant Majhi, James S. Clarke, Uday Shah
  • Publication number: 20200357782
    Abstract: An embedded cross-point memory array is described. In an example, an integrated circuit structure includes a first die including a cross-point memory array comprising separate memory blocks, the memory blocks including orthogonally arranged conductive lines, and memory elements at cross-sections of the conductive lines. A first plurality of sockets is on the first die adjacent to the memory blocks, the first plurality of sockets comprising a first plurality of pads that connect to at least a portion to the conductive lines of the corresponding memory block. A second die includes logic circuitry and a second plurality of sockets comprising a second plurality of pads at least partially aligned with positions of the first plurality of pads on the first die. A top of the first die and a top of the second die face one another, wherein the first plurality of pads are bonded with the second plurality pads to directly connect the cross-point memory array to the logic circuitry.
    Type: Application
    Filed: September 25, 2017
    Publication date: November 12, 2020
    Inventors: Elijah V. KARPOV, Prashant MAJHI, Brian S. DOYLE, Ravi PILLARISETTY, Yih WANG
  • Publication number: 20200350423
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer.
    Type: Application
    Filed: September 28, 2017
    Publication date: November 5, 2020
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Van H. Le, Nicole K. Thomas, Hubert C. George, Jeanette Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke, Roza Kotlyar, Kanwaljit Singh
  • Patent number: 10825861
    Abstract: An embodiment includes an apparatus comprising: first and second electrodes; first and second insulation layers between the first and second electrodes; and a middle layer between the first and second insulation layers; wherein (a) the middle layer includes material that has a first resistance when the first electrode is biased at a first voltage level and a second resistance when the first electrode is biased at a second voltage level; (b) the first resistance is less than the second resistance and the first voltage level is greater than the second voltage level. Other embodiments are described herein.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 3, 2020
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Prashant Majhi, Ravi Pillarisetty, Uday Shah, James S. Clarke