Patents by Inventor Ray A. Mentzer

Ray A. Mentzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5459412
    Abstract: A translator circuit for converting from a first logic-level range to a second logic-level range, as is generally involved in the translation from an ECL stage to a CMOS stage. The translator includes a reference stage that provides a reference voltage that is coupled to the CMOS logic stage as well as the ECL logic stage. The ECL logic stage is indirectly coupled between a high potential power rail and a low potential power rail through a plurality of transistors. The CMOS stage is coupled to the ECL stage through two emitter-follower transistors. The CMOS stage uses current-mirroring techniques in combination with the isolated reference stage to effect a translation from the ECL logic level to the CMOS logic level. The CMOS stage also provides relatively fast propagation time which may be set, within certain limits, to a desired time.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: October 17, 1995
    Assignee: National Semiconductor Corporation
    Inventor: Ray A. Mentzer
  • Patent number: 5436908
    Abstract: An output skew detection circuit detects and measures output skew tOSLH, tOSHL between multiple in phase common edge output signals propagated through a multiple signal driver circuit having n outputs. The output skew detection circuit senses common edge output skew across the n in phase output signals simultaneously and directly. A first logic gate has n inputs coupled to the n outputs, detects occurrence of either the first or last of the multiple common edge output signals, and generates a first skew detection edge signal at a first logic gate output. The first and last common edge output signals are the signals propagated with minimum and maximum propagation times tplhmin, tphlmin and tplhmax, tphlmax. A second logic gate has n inputs coupled to the n outputs in parallel with the first logic gate. The second logic gate detects occurrence of the other of the first and last of the multiple common edge output signals and generates a second skew detection edge signal at a second logic gate output.
    Type: Grant
    Filed: June 17, 1992
    Date of Patent: July 25, 1995
    Assignee: National Semiconductor Corporation
    Inventors: Jon L. Fluker, Ray A. Mentzer
  • Patent number: 5382921
    Abstract: A broadband low-gain system for automatically frequency-locking a signal where the system uses digital and analog devices and techniques. The system includes a comparator, an up/down counter, a digital-to-analog converter, a decoder, a ring oscillator and a downcounter. The digital control signal is provided by the decoder and actuates one of a plurality of ring oscillator stages. The analog control signal is provided by the digital-to analog-converter and controls a fine-tune mechanism in the actuated stage. The system includes a master reset for clearing the counters.
    Type: Grant
    Filed: November 23, 1992
    Date of Patent: January 17, 1995
    Assignee: National Semiconductor Corporation
    Inventors: Julio R. Estrada, Ray A. Mentzer
  • Patent number: 5349311
    Abstract: A voltage controlled oscillator (VCO) operating as a variable length, variable delay, ring oscillator having a current starved inverter and an anti high-gain circuit for each stage. A VCO feedback signal is compared with a reference frequency obtained, for example, from a system crystal oscillator. A phase and frequency detector monitors these two input signals and issues "up" or "down" commands to a digital counter. This digital counter delivers select signals via a decoder and also drives a Digital to Analog Converter ("DAC"). The digital select signal from the counter chooses an operational stage from the multi-stage, tandem-connected VCO. A broadband operation for the VCO is achieved by overlapping the individual frequency ranges associated with each of the individual stages. The DAC moves the operation along each selected frequency range associated with a selected stage until a system lock between the VCO output and the crystal references is achieved.
    Type: Grant
    Filed: November 23, 1992
    Date of Patent: September 20, 1994
    Assignee: National Semiconductor Corporation
    Inventor: Ray A. Mentzer
  • Patent number: 5304952
    Abstract: A lock sensor circuit detects and indicates occurrence of a phase lock condition of an output signal of a phase lock loop (PLL) circuit when the PLL output signal is phase locked to a reference signal. A phase and frequency detector (PFD) has a reference signal input (REF IN) and a feedback signal input (VCO FBK IN) coupled to the output of the PLL circuit. The PFD delivers output UP and DOWN signals according to whether the reference signal leads or lags the feedback signal. A multi-bit up/down counter (FIG. 2 ) has UP and DOWN inputs coupled to the respective UP and DOWN outputs of the PFD and an m bit output (Q0, Q1, . . . Q10). A lock sensor circuit (50) coupled to the m bit up/down counter monitors the nth bit output (QN) of the up/down counter where n<m. A first down counter (F1, F2) counts consecutive output DOWN signals in the absence of an output UP signal. A second up counter (F3, F4) counts consecutive output UP signals in the absence of an output DOWN signal.
    Type: Grant
    Filed: May 10, 1993
    Date of Patent: April 19, 1994
    Assignee: National Semiconductor Corporation
    Inventors: Duane G. Quiet, Ray A. Mentzer
  • Patent number: 5173621
    Abstract: Circuit configurations are described for use with split lead leadframes and relatively isolated quiet and noisy power rails to reduce power rail noise and circuit noise. An octal register transceiver circuit incorporates a latch (300) coupled to relatively quiet power rails (42,44) and an output buffer circuit (400) having an input circuit coupled to the latch (300) and relatively quiet power rails (42,44). The output driver transistors (Q433,Q434) of the output buffer circuit (400) are coupled to the relatively noisy output power rails (52,54) to isolate the latch circuit from power rail noise and minimize erroneous operation of the latch. A DC Miller Killer circuit (450) is constructed with delay control components (D456,D457,R460) and an alternative discharge path (R458,D459) to reduce aggravation of power rail noise during operation of DCMK.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: December 22, 1992
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Dana Fraser, Ray A. Mentzer, Jerry Gray, Geoff Hannington, Susan M. Keown, Gaetan L. Mathieu
  • Patent number: 5065224
    Abstract: To reduce the effect of on-chip power rail perturbation on integrated circuit performance, a lead configuration is provided having two or more leads originating at a single terminal, e.g. a pin. While merged near the pin in a common segment, the leads connect on the integrated circuit chip to respective isolated internal rails of the same type serving respective device stages. Preferably, the inductance of the common segment is minimized. In accordance with the invention, an octal registered transceiver is provided with isolated V.sub.cc and ground rails for the latch and output buffers. The lead configuration described above is used for both V.sub.cc and ground. Several circuits are improved to optimize performance of the device, including a DC Miller killer circuit. Also in accordance with the invention, the paddle of a PDIP leadframe is supported by tiebars that extends to the dambars at the sides of the leadframe.
    Type: Grant
    Filed: September 8, 1988
    Date of Patent: November 12, 1991
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Dana Fraser, Ray A. Mentzer, Jerry Gray, Geoff Hannington, Susan M. Keown, Gaetan L. Mathieu