Patents by Inventor Razvan Pascanu

Razvan Pascanu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240119262
    Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
    Type: Application
    Filed: October 2, 2023
    Publication date: April 11, 2024
    Inventors: Neil Charles Rabinowitz, Guillaume Desjardins, Andrei-Alexandru Rusu, Koray Kavukcuoglu, Raia Thais Hadsell, Razvan Pascanu, James Kirkpatrick, Hubert Josef Soyer
  • Publication number: 20230376780
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network used to select actions performed by an agent interacting with an environment by performing actions that cause the environment to transition states. One of the methods includes maintaining a replay memory storing a plurality of transitions; selecting a plurality of transitions from the replay memory; and training the neural network on the plurality of transitions, comprising, for each transition: generating an initial Q value for the transition; determining a scaled Q value for the transition; determining a scaled temporal difference learning target for the transition; determining an error between the scaled temporal difference learning target and the scaled Q value; determining an update to the current values of the Q network parameters; and determining an update to the current value of the scaling term.
    Type: Application
    Filed: October 1, 2021
    Publication date: November 23, 2023
    Inventors: Caglar Gulcehre, Razvan Pascanu, Sergio Gomez
  • Patent number: 11775804
    Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: October 3, 2023
    Assignee: DeepMind Technologies Limited
    Inventors: Neil Charles Rabinowitz, Guillaume Desjardins, Andrei-Alexandru Rusu, Koray Kavukcuoglu, Raia Thais Hadsell, Razvan Pascanu, James Kirkpatrick, Hubert Josef Soyer
  • Patent number: 11755879
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing and storing inputs for use in a neural network. One of the methods includes receiving input data for storage in a memory system comprising a first set of memory blocks, the memory blocks having an associated order; passing the input data to a highest ordered memory block; for each memory block for which there is a lower ordered memory block: applying a filter function to data currently stored by the memory block to generate filtered data and passing the filtered data to a lower ordered memory block; and for each memory block: combining the data currently stored in the memory block with the data passed to the memory block to generate updated data, and storing the updated data in the memory block.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: September 12, 2023
    Assignee: DeepMind Technologies Limited
    Inventors: Razvan Pascanu, William Clinton Dabney, Thomas Stepleton
  • Publication number: 20230124177
    Abstract: A computer-implemented method of training a neural network. The method comprises repeatedly determining a forward-pass set of network parameters by selecting a first sub-set of parameters of the neural network and setting all other parameters of the forward-pass set of network parameters to zero. The method then processes a training data item using the neural network in accordance with the forward-pass set of network parameters to generate a neural network output, determines a value of an objective function from the neural network output and the training data item, selects a second sub-set of network parameters, determines a backward-pass set of network parameters comprising the first and second sub-sets of parameters, and updates parameters corresponding to the backward-pass set of network parameters using a gradient estimate determined from the value of the objective function.
    Type: Application
    Filed: June 4, 2021
    Publication date: April 20, 2023
    Inventors: Siddhant Madhu Jayakumar, Razvan Pascanu, Jack William Rae, Simon Osindero, Erich Konrad Elsen
  • Patent number: 11534911
    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: December 27, 2022
    Assignee: DeepMind Technologies Limited
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Mel Vecerik, Thomas Rothoerl, Andrei-Alexandru Rusu, Nicolas Manfred Otto Heess
  • Publication number: 20220366218
    Abstract: A system including an attention neural network that is configured to receive an input sequence and to process the input sequence to generate an output is described. The attention neural network includes: an attention block configured to receive a query input, a key input, and a value input that are derived from an attention block input. The attention block includes an attention neural network layer configured to: receive an attention layer input derived from the query input, the key input, and the value input, and apply an attention mechanism to the query input, the key input, and the value input to generate an attention layer output for the attention neural network layer; and a gating neural network layer configured to apply a gating mechanism to the attention block input and the attention layer output of the attention neural network layer to generate a gated attention output.
    Type: Application
    Filed: September 7, 2020
    Publication date: November 17, 2022
    Inventors: Emilio Parisotto, Hasuk Song, Jack William Rae, Siddhant Madhu Jayakumar, Maxwell Elliot Jaderberg, Razvan Pascanu, Caglar Gulcehre
  • Publication number: 20220355472
    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Mel Vecerik, Thomas Rothoerl, Andrei-Alexandru Rusu, Nicolas Manfred Otto Heess
  • Patent number: 11423300
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a system output using a remembered value of a neural network hidden state. In one aspect, a system comprises an external memory that maintains context experience tuples respectively comprising: (i) a key embedding of context data, and (ii) a value of a hidden state of a neural network at the respective previous time step. The neural network is configured to receive a system input and a remembered value of the hidden state of the neural network and to generate a system output. The system comprises a memory interface subsystem that is configured to determine a key embedding for current context data, determine a remembered value of the hidden state of the neural network based on the key embedding, and provide the remembered value of the hidden state as an input to the neural network.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: August 23, 2022
    Assignee: DeepMind Technologies Limited
    Inventors: Samuel Ritter, Xiao Jing Wang, Siddhant Jayakumar, Razvan Pascanu, Charles Blundell, Matthew Botvinick
  • Patent number: 11388424
    Abstract: A system implemented by one or more computers comprises a visual encoder component configured to receive as input data representing a sequence of image frames, in particular representing objects in a scene of the sequence, and to output a sequence of corresponding state codes, each state code comprising vectors, one for each of the objects. Each vector represents a respective position and velocity of its corresponding object. The system also comprises a dynamic predictor component configured to take as input a sequence of state codes, for example from the visual encoder, and predict a state code for a next unobserved frame. The system further comprises a state decoder component configured to convert the predicted state code, to a state, the state comprising a respective position and velocity vector for each object in the scene. This state may represent a predicted position and velocity vector for each of the objects.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: July 12, 2022
    Assignee: DeepMind Technologies Limited
    Inventors: Nicholas Watters, Razvan Pascanu, Peter William Battaglia, Daniel Zorn, Theophane Guillaume Weber
  • Patent number: 11328183
    Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: May 10, 2022
    Assignee: DeepMind Technologies Limited
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Arthur Clement Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Publication number: 20220083869
    Abstract: A method is proposed for training a multitask computer system, such as a multitask neural network system. The system comprises a set of trainable workers and a shared module. The trainable workers and shared module are trained on a plurality of different tasks, such that each worker learns to perform a corresponding one of the tasks according to a respective task policy, and said shared policy network learns a multitask policy which represents common behavior for the tasks. The coordinated training is performed by optimizing an objective function comprising, for each task: a reward term indicative of an expected reward earned by a worker in performing the corresponding task according to the task policy; and at least one entropy term which regularizes the distribution of the task policy towards the distribution of the multitask policy.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 17, 2022
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Victor Constant Bapst, Wojciech Czarnecki, James Kirkpatrick, Yee Whye Teh, Nicolas Manfred Otto Heess
  • Publication number: 20210383228
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating prediction outputs characterizing a set of entities. In one aspect, a method comprises: obtaining data defining a graph, comprising: (i) a set of nodes, wherein each node represents a respective entity from the set of entities, (ii) a current set of edges, wherein each edge connects a pair of nodes, and (iii) a respective current embedding of each node; at each of a plurality of time steps: updating the respective current embedding of each node, comprising processing data defining the graph using a graph neural network; and updating the current set of edges based at least in part on the updated embeddings of the nodes; and at one or more of the plurality of time steps: generating a prediction output characterizing the set of entities based on the current embeddings of the nodes.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 9, 2021
    Inventors: Petar Velickovic, Charles Blundell, Oriol Vinyals, Razvan Pascanu, Lars Buesing, Matthew Overlan
  • Patent number: 11132609
    Abstract: A method is proposed for training a multitask computer system, such as a multitask neural network system. The system comprises a set of trainable workers and a shared module. The trainable workers and shared module are trained on a plurality of different tasks, such that each worker learns to perform a corresponding one of the tasks according to a respective task policy, and said shared policy network learns a multitask policy which represents common behavior for the tasks. The coordinated training is performed by optimizing an objective function comprising, for each task: a reward term indicative of an expected reward earned by a worker in performing the corresponding task according to the task policy; and at least one entropy term which regularizes the distribution of the task policy towards the distribution of the multitask policy.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: September 28, 2021
    Assignee: DeepMind Technologies Limited
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Victor Constant Bapst, Wojciech Czarnecki, James Kirkpatrick, Yee Whye Teh, Nicolas Manfred Otto Heess
  • Patent number: 11074481
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: July 27, 2021
    Assignee: DeepMind Technologies Limited
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Publication number: 20210201116
    Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Neil Charles Rabinowitz, Guillaume Desjardins, Andrei-Alexandru Rusu, Koray Kavukcuoglu, Raia Thais Hadsell, Razvan Pascanu, James Kirkpatrick, Hubert Josef Soyer
  • Publication number: 20210152835
    Abstract: A system implemented by one or more computers comprises a visual encoder component configured to receive as input data representing a sequence of image frames, in particular representing objects in a scene of the sequence, and to output a sequence of corresponding state codes, each state code comprising vectors, one for each of the objects. Each vector represents a respective position and velocity of its corresponding object. The system also comprises a dynamic predictor component configured to take as input a sequence of state codes, for example from the visual encoder, and predict a state code for a next unobserved frame. The system further comprises a state decoder component configured to convert the predicted state code, to a state, the state comprising a respective position and velocity vector for each object in the scene. This state may represent a predicted position and velocity vector for each of the objects.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 20, 2021
    Inventors: Nicholas Watters, Razvan Pascanu, Peter William Battaglia, Daniel Zorn, Theophane Guillaume Weber
  • Publication number: 20210117786
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scalable continual learning using neural networks. One of the methods includes receiving new training data for a new machine learning task; training an active subnetwork on the new training data to determine trained values of the active network parameters from initial values of the active network parameters while holding current values of the knowledge parameters fixed; and training a knowledge subnetwork on the new training data to determine updated values of the knowledge parameters from the current values of the knowledge parameters by training the knowledge subnetwork to generate knowledge outputs for the new training inputs that match active outputs generated by the trained active subnetwork for the new training inputs.
    Type: Application
    Filed: April 18, 2019
    Publication date: April 22, 2021
    Inventors: Jonathan Schwarz, Razvan Pascanu, Raia Thais Hadsell, Wojciech Czarnecki, Yee Whye Teh, Jelena Luketina
  • Publication number: 20210089834
    Abstract: A neural network system is proposed to select actions to be performed by an agent interacting with an environment to perform a task in an attempt to achieve a specified result. The system may include a controller to receive state data and context data, and to output action data. The system may also include an imagination module to receive the state and action data, and to output consequent state data. The system may also include a manager to receive the state data and the context data, and to output route data which defines whether the system is to execute an action or to imagine. The system may also include a memory to store the context data.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Patent number: 10949734
    Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: March 16, 2021
    Assignee: DeepMind Technologies Limited
    Inventors: Neil Charles Rabinowitz, Guillaume Desjardins, Andrei-Alexandru Rusu, Koray Kavukcuoglu, Raia Thais Hadsell, Razvan Pascanu, James Kirkpatrick, Hubert Josef Soyer