Patents by Inventor Razvan Pascanu

Razvan Pascanu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200090006
    Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 19, 2020
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Arthur Clement Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Publication number: 20200082227
    Abstract: A neural network system is proposed to select actions to be performed by an agent interacting with an environment to perform a task in an attempt to achieve a specified result. The system may include a controller to receive state data and context data, and to output action data. The system may also include an imagination module to receive the state and action data, and to output consequent state data. The system may also include a manager to receive the state data and the context data, and to output route data which defines whether the system is to execute an action or to imagine. The system may also include a memory to store the context data.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 12, 2020
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Patent number: 10572776
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 25, 2020
    Assignee: DeepMind Technologies Limited
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Publication number: 20190266449
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 29, 2019
    Inventors: Fabio Viola, Piotr Wojciech Mirowski, Andrea Banino, Razvan Pascanu, Hubert Josef Soyer, Andrew James Ballard, Sudarshan Kumaran, Raia Thais Hadsell, Laurent Sifre, Rostislav Goroshin, Koray Kavukcuoglu, Misha Man Ray Denil
  • Publication number: 20190251419
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing and storing inputs for use in a neural network. One of the methods includes receiving input data for storage in a memory system comprising a first set of memory blocks, the memory blocks having an associated order; passing the input data to a highest ordered memory block; for each memory block for which there is a lower ordered memory block: applying a filter function to data currently stored by the memory block to generate filtered data and passing the filtered data to a lower ordered memory block; and for each memory block: combining the data currently stored in the memory block with the data passed to the memory block to generate updated data, and storing the updated data in the memory block.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 15, 2019
    Inventors: Razvan Pascanu, William Clinton Dabney, Thomas Stepleton
  • Publication number: 20190232489
    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Razvan Pascanu, Raia Thais Hadsell, Mel Vecerik, Thomas Rothoerl, Andrei-Alexandru Rusu, Nicolas Manfred Otto Heess
  • Publication number: 20190236482
    Abstract: A method of training a machine learning model having multiple parameters, in which the machine learning model has been trained on a first machine learning task to determine first values of the parameters of the machine learning model.
    Type: Application
    Filed: July 18, 2017
    Publication date: August 1, 2019
    Inventors: Guillaume Desjardins, Razvan Pascanu, Raia Thais Hadsell, James Kirkpatrick, Joel William Veness, Neil Charles Rabinowitz
  • Publication number: 20170337464
    Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
    Type: Application
    Filed: December 30, 2016
    Publication date: November 23, 2017
    Inventors: Neil Charles Rabinowitz, Guillaume Desjardins, Andrei-Alexandru Rusu, Koray Kavukcuoglu, Raia Thais Hadsell, Razvan Pascanu, James Kirkpatrick, Hubert Josef Soyer
  • Publication number: 20160358073
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing inputs using a neural network system that includes a whitened neural network layer. One of the methods includes receiving an input activation generated by a layer before the whitened neural network layer in the sequence; processing the received activation in accordance with a set of whitening parameters to generate a whitened activation; processing the whitened activation in accordance with a set of layer parameters to generate an output activation; and providing the output activation as input to a neural network layer after the whitened neural network layer in the sequence.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 8, 2016
    Inventors: Guillaume Desjardins, Karen Simonyan, Koray Kavukcuoglu, Razvan Pascanu