Patents by Inventor Reimund Rebel

Reimund Rebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130140651
    Abstract: Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator, may then be formed from the piezoelectric material wafer.
    Type: Application
    Filed: November 20, 2012
    Publication date: June 6, 2013
    Applicant: Sand 9, Inc.
    Inventors: David M. Chen, Jan H. Kuypers, Pritiraj Mohanty, Klaus Juergen Schoepf, Guiti Zolfagharkhani, Jason Goodelle, Reimund Rebel
  • Publication number: 20130140944
    Abstract: Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator, may then be formed from the piezoelectric material wafer.
    Type: Application
    Filed: November 20, 2012
    Publication date: June 6, 2013
    Applicant: Sand 9, Inc.
    Inventors: David M. Chen, Jan H. Kuypers, Pritiraj Mohanty, Klaus Juergen Schoepf, Guiti Zolfagharkhani, Jason Goodelle, Reimund Rebel
  • Publication number: 20130140958
    Abstract: Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator, may then be formed from the piezoelectric material wafer.
    Type: Application
    Filed: November 20, 2012
    Publication date: June 6, 2013
    Applicant: Sand 9, Inc.
    Inventors: David M. Chen, Jan H. Kuypers, Pritiraj Mohanty, Klaus Juergen Schoepf, Guiti Zolfagharkhani, Jason Goodelle, Reimund Rebel
  • Patent number: 8456250
    Abstract: Methods and apparatus for tuning devices having resonators are described. Phase shifters are included in the circuits and used to shift the phase of the output signal(s) of the resonators. In some implementations, the phase shifters are configured in a feedback loop with the resonators. One or more of the apparatus described herein may be implemented as part, or all, of a microelectromechanical system (MEMS).
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: June 4, 2013
    Assignee: Sand 9, Inc.
    Inventors: David Locascio, Reimund Rebel, Jan H. Kuypers
  • Patent number: 8446227
    Abstract: Methods and apparatus for tuning devices having mechanical resonators are described. In one implementation, a mechanical resonator and a phase shifter are configured in a feedback loop, so that the phase shifter shifts the phase of the resonator output signal. The amount of phase shift induced by the phase shifter may be variable. In another implementation, an LC tuning subcircuit is coupled to a mechanical resonator. In some implementations, the LC tuning subcircuit has a variable capacitance. One or more of the apparatus described herein may be implemented as part, or all, of a microelectromechanical system (MEMS).
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: May 21, 2013
    Assignee: Sand 9, Inc.
    Inventors: Reimund Rebel, Klaus Juergen Schoepf
  • Publication number: 20130106473
    Abstract: The disclosed power-on reset circuit provides an indication of when and whether a supply voltage Vdd has reached a trigger voltage level Vtrig. The disclosed circuit includes a flip-flop circuit and a first comparator circuit. The circuit according to the invention has a D input node of the flip-flop circuit coupled to the supply voltage. The first comparator circuit outputs a clock signal, where the flip-flop circuit is clocked by the clock signal. A Q output node of the flip-flop circuit provides the power-on reset signal, where the power-on reset signal is in a LO state when the supply voltage is at a voltage level that is less than the trigger voltage level Vtrig. The power-on reset signal is in a HI state when the supply voltage is at a voltage level that is greater than the trigger voltage level Vtrig.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: SAND 9, INC.
    Inventors: Bruce M. Newman, Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf, Mohammad Asmani
  • Publication number: 20130093468
    Abstract: Frequency synthesizers for use with oscillators that generate an arbitrary frequency are described, as well as related devices and methods. Divider information can be generated or otherwise accessed for use in configuring a phase lock loop device that is adapted for coupling with the oscillator, where the phase lock loop device can include a plurality of integer dividers without utilizing a fractional divider, where the divider information can include frequency deviations corresponding to groups of integer divider settings for the phase lock loop device, and where each deviation of the frequency deviations can be based on a frequency differential between a standard operating frequency and an output frequency for the phase lock loop utilizing one group of integer divider settings from the groups of integer divider settings.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: Sand 9, Inc.
    Inventors: REIMUND REBEL, Klaus Juergen Schoepf
  • Patent number: 8415993
    Abstract: The disclosed power-on reset circuit provides an indication of when and whether a supply voltage Vdd has reached a trigger voltage level Vtrig. The disclosed circuit includes a flip-flop circuit and a first comparator circuit. The circuit according to the invention has a D input node of the flip-flop circuit coupled to the supply voltage. The first comparator circuit outputs a clock signal, where the flip-flop circuit is clocked by the clock signal. A Q output node of the flip-flop circuit provides the power-on reset signal, where the power-on reset signal is in a LO state when the supply voltage is at a voltage level that is less than the trigger voltage level Vtrig. The power-on reset signal is in a HI state when the supply voltage is at a voltage level that is greater than the trigger voltage level Vtrig.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: April 9, 2013
    Assignee: Sand 9, Inc.
    Inventors: Bruce M. Newman, Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf, Mohammad Asmani
  • Patent number: 8410868
    Abstract: Methods and apparatus for temperature control of devices and mechanical resonating structures are described. A mechanical resonating structure may include a heating element and a temperature sensor. The temperature sensor may sense the temperature of the mechanical resonating structure, and the heating element may be adjusted to provide a desired level of heating. Optionally, additional heating elements and/or temperature sensors may be included.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: April 2, 2013
    Assignee: Sand 9, Inc.
    Inventors: Klaus Juergen Schoepf, Reimund Rebel
  • Patent number: 8395456
    Abstract: A variable phase amplifier circuit is disclosed and its method of use in tuning devices having resonators. The variable phase amplifier receives an input differential signal pair. The input differential signal pair can be generated by a resonator device. The variable phase amplifier generates a modified differential signal pair in response to receiving the input differential signal pair. The variable phase amplifier provides a means to vary the phase of the modified differential signal pair with respect to the input differential signal pair, in an accurate and stable manner. If the modified differential signal pair with a phase shift introduced in it is fed back to the resonator device, the resonator will change its frequency of oscillation, where the new frequency of oscillation is a function of the phase of the modified differential signal pair.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 12, 2013
    Assignee: Sand 9, Inc.
    Inventors: Dean A. Badillo, Reimund Rebel, Klaus Juergen Schoepf
  • Publication number: 20120315866
    Abstract: Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 13, 2012
    Applicant: Sand 9, Inc.
    Inventors: Reimund Rebel, Klaus Juergen Schoepf, Jan H. Kuypers
  • Patent number: 8319566
    Abstract: Methods and apparatus for tuning devices having mechanical resonators are described. In one implementation, a mechanical resonator and a phase shifter are configured in a feedback loop, so that the phase shifter shifts the phase of the resonator output signal. The amount of phase shift induced by the phase shifter may be variable. In another implementation, an LC tuning subcircuit is coupled to a mechanical resonator. In some implementations, the LC tuning subcircuit has a variable capacitance. One or more of the apparatus described herein may be implemented as part, or all, of a microelectromechanical system (MEMS).
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: November 27, 2012
    Assignee: Sand 9, Inc.
    Inventors: Reimund Rebel, Klaus Juergen Schoepf
  • Publication number: 20120280594
    Abstract: Devices having piezoelectric material structures integrated with substrates are described. Fabrication techniques for forming such devices are also described. The fabrication may include bonding a piezoelectric material wafer to a substrate of a differing material. A structure, such as a resonator, may then be formed from the piezoelectric material wafer.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 8, 2012
    Applicant: Sand 9, Inc.
    Inventors: David M. Chen, Jan H. Kuypers, Pritiraj Mohanty, Klaus Juergen Schoepf, Guiti Zolfagharkhani, Jason Goodelle, Reimund Rebel
  • Patent number: 8228127
    Abstract: Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 24, 2012
    Assignee: Sand 9, Inc.
    Inventors: Reimund Rebel, Klaus Juergen Schoepf, Jan H. Kuypers
  • Publication number: 20120163134
    Abstract: Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
    Type: Application
    Filed: March 2, 2012
    Publication date: June 28, 2012
    Applicant: Sand9, Inc.
    Inventors: Klaus Juergen Schoepf, Reimund Rebel, Jan H. Kuypers
  • Publication number: 20120139647
    Abstract: Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 7, 2012
    Applicant: Sand9, Inc.
    Inventors: Klaus Juergen Schoepf, Reimund Rebel, Jan H. Kuypers
  • Publication number: 20120013410
    Abstract: Methods and apparatus for calibration and temperature compensation of oscillators having mechanical resonators are described. The method(s) may involve measuring the frequency of the oscillator at multiple discrete temperatures and adjusting compensation circuitry of the oscillator at the various temperatures. The compensation circuitry may include multiple programmable elements which may independently adjust the frequency behavior of the oscillator at a respective temperature. Thus, adjustment of the frequency behavior of the oscillator at one temperature may not alter the frequency behavior at a second temperature.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 19, 2012
    Applicant: Sand9, Inc.
    Inventors: Reimund Rebel, Jan H. Kuypers, David Locascio
  • Publication number: 20110284995
    Abstract: Micromechanical membranes suitable for formation of mechanical resonating structures are described, as well as methods for making such membranes. The membranes may be formed by forming cavities in a substrate, and in some instances may be oxidized to provide desired mechanical properties. Mechanical resonating structures may be formed from the membrane and oxide structures.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 24, 2011
    Applicant: Sand9, Inc.
    Inventors: Jan H. Kuypers, Andrew Sparks, Klaus Juergen Schoepf, Reimund Rebel
  • Publication number: 20110212718
    Abstract: Apparatus and methods for stabilizing reference oscillators are described. According to some embodiments, the reference oscillator of a device may be stabilized by synchronizing the reference oscillator to an external signal received by the device. The device may be a navigation device in some embodiments, and the external signal may represent or be synchronized to an atomic clock signal or other signal exhibiting sufficient stability.
    Type: Application
    Filed: February 28, 2011
    Publication date: September 1, 2011
    Applicant: Sand9, Inc.
    Inventors: Klaus Juergen Schoepf, Jan H. Kuypers, Reimund Rebel
  • Publication number: 20110181366
    Abstract: Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
    Type: Application
    Filed: December 23, 2010
    Publication date: July 28, 2011
    Applicant: Sand9, Inc.
    Inventors: Klaus Juergen Schoepf, Reimund Rebel, Jan H. Kuypers