Patents by Inventor Reinhard Schauer

Reinhard Schauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11578424
    Abstract: A semiconductor wafer comprises a substrate wafer of monocrystalline silicon and a dopant-containing epitaxial layer of monocrystalline silicon atop the substrate wafer, wherein a non-uniformity of the thickness of the epitaxial layer is not more than 0.5% and a non-uniformity of the specific electrical resistance of the epitaxial layer is not more than 2%.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: February 14, 2023
    Assignee: SILTRONIC AG
    Inventors: Reinhard Schauer, Joerg Haberecht
  • Publication number: 20220267926
    Abstract: Variations in wafer thickness due to non-uniform CVD depositions at angular positions corresponding to crystallographic orientation of the wafer are reduced by providing a ring below the susceptor having inward projections at azimuthal positions which reduce radiant heat impinging upon the wafer at positions of increased deposition.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 25, 2022
    Applicant: SILTRONIC AG
    Inventors: Joerg HABERECHT, Stephan HEINRICH, Reinhard SCHAUER, Rene STEIN
  • Patent number: 11380621
    Abstract: A semiconductor wafer processing susceptor for holding a wafer having an orientation notch during deposition of a layer on the wafer, having a placement surface for supporting the semiconductor wafer in the rear edge region of the wafer, the placement surface having a stepped outer delimitation, and an indentation of the outer delimitation of the placement surface for placement of the partial region of the edge region of the rear side of the wafer in which the orientation notch is located onto a partial region of the placement surface delimited by the indentation of the outer delimitation of the placement surface. The susceptor is used in a method for depositing a layer on a wafer having an orientation notch, and wafers made of monocrystalline silicon upon which layers are deposited using the susceptor have greater local flatness on both front and rear sides proximate the orientation notch.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: July 5, 2022
    Assignee: SILTRONIC AG
    Inventors: Reinhard Schauer, Christian Hager
  • Patent number: 10991614
    Abstract: A susceptor for holding a semiconductor wafer with an orientation notch during deposition of a layer on the wafer comprises a susceptor ring having a placement area for placing the semiconductor wafer in the edge region of a back side of the semiconductor wafer and a step-shaped outer delimitation of the susceptor ring adjoining the placement area. The susceptor has four positions at which the structure differs from the structure at four further positions, the spacing from one of the four positions to the next of the four positions being 90°, the spacing from one of the four positions to the next further position being 45°, one of the four positions being a notch position at which the structure of the susceptor differs from the structure of the susceptor at the three other positions of the four positions of the susceptor.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: April 27, 2021
    Assignee: Siltronic AG
    Inventor: Reinhard Schauer
  • Publication number: 20210087705
    Abstract: A semiconductor wafer comprises a substrate wafer of monocrystalline silicon and a dopant-containing epitaxial layer of monocrystalline silicon atop the substrate wafer, wherein a non-uniformity of the thickness of the epitaxial layer is not more than 0.5% and a non-uniformity of the specific electrical resistance of the epitaxial layer is not more than 2%.
    Type: Application
    Filed: July 12, 2018
    Publication date: March 25, 2021
    Applicant: SILTRONIC AG
    Inventors: Reinhard SCHAUER, Joerg HABERECHT
  • Publication number: 20200365443
    Abstract: A susceptor for holding a semiconductor wafer with an orientation notch during deposition of a layer on the wafer comprises a susceptor ring having a placement area for placing the semiconductor wafer in the edge region of a back side of the semiconductor wafer and a step-shaped outer delimitation of the susceptor ring adjoining the placement area. The susceptor has four positions at which the structure differs from the structure at four further positions, the spacing from one of the four positions to the next of the four positions being 90°, the spacing from one of the four positions to the next further position being 45°, one of the four positions being a notch position at which the structure of the susceptor differs from the structure of the susceptor at the three other positions of the four positions of the susceptor.
    Type: Application
    Filed: April 17, 2018
    Publication date: November 19, 2020
    Applicant: SILTRONIC AG
    Inventor: Reinhard SCHAUER
  • Patent number: 10597795
    Abstract: Semiconductor wafers with an epitaxial layer are produced in a deposition chamber by placing a substrate wafer in the edge region of the rear side of the substrate wafer onto a placement area of a susceptor; loading the deposition chamber with the susceptor and the substrate wafer lying on the susceptor by contacting the susceptor and transporting the susceptor and the substrate wafer lying on the susceptor from a load lock chamber into the deposition chamber; depositing an epitaxial layer on the substrate wafer; and unloading the deposition chamber by contacting the susceptor and transporting the susceptor and a semiconductor wafer with epitaxial layer, the semiconductor wafer having been produced in the course of depositing the epitaxial layer and lying on the susceptor, from the deposition chamber into the load lock chamber.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: March 24, 2020
    Assignee: SILTRONIC AG
    Inventors: Patrick Moos, Reinhard Schauer
  • Publication number: 20180282900
    Abstract: Semiconductor wafers with an epitaxial layer are produced in a deposition chamber by placing a substrate wafer in the edge region of the rear side of the substrate wafer onto a placement area of a susceptor; loading the deposition chamber with the susceptor and the substrate wafer lying on the susceptor by contacting the susceptor and transporting the susceptor and the substrate wafer lying on the susceptor from a load lock chamber into the deposition chamber; depositing an epitaxial layer on the substrate wafer; and unloading the deposition chamber by contacting the susceptor and transporting the susceptor and a semiconductor wafer with epitaxial layer, the semiconductor wafer having been produced in the course of depositing the epitaxial layer and lying on the susceptor, from the deposition chamber into the load lock chamber.
    Type: Application
    Filed: November 24, 2016
    Publication date: October 4, 2018
    Applicant: SILTRONIC AG
    Inventors: Patrick MOOS, Reinhard SCHAUER
  • Publication number: 20180211923
    Abstract: A semiconductor wafer processing susceptor for holding a wafer having an orientation notch during deposition of a layer on the wafer, having a placement surface for supporting the semiconductor wafer in the rear edge region of the wafer, the placement surface having a stepped outer delimitation, and an indentation of the outer delimitation of the placement surface for placement of the partial region of the edge region of the rear side of the wafer in which the orientation notch is located onto a partial region of the placement surface delimited by the indentation of the outer delimitation of the placement surface. The susceptor is used in a method for depositing a layer on a wafer having an orientation notch, and wafers made of monocrystalline silicon upon which layers are deposited using the susceptor have greater local flatness on both front and rear sides proximate the orientation notch.
    Type: Application
    Filed: March 22, 2018
    Publication date: July 26, 2018
    Applicant: SILTRONIC AG
    Inventors: Reinhard SCHAUER, Christian HAGER
  • Patent number: 9991208
    Abstract: A semiconductor wafer processing susceptor for holding a wafer having an orientation notch during deposition of a layer on the wafer, having a placement surface for supporting the semiconductor wafer in the rear edge region of the wafer, the placement surface having a stepped outer delimitation, and an indentation of the outer delimitation of the placement surface for placement of the partial region of the edge region of the rear side of the wafer in which the orientation notch is located onto a partial region of the placement surface delimited by the indentation of the outer delimitation of the placement surface. The susceptor is used in a method for depositing a layer on a wafer having an orientation notch, and wafers made of monocrystalline silicon upon which layers are deposited using the susceptor have greater local flatness on both front and rear sides proximate the orientation notch.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: June 5, 2018
    Assignee: SILTRONIC AG
    Inventors: Reinhard Schauer, Christian Hager
  • Publication number: 20170117228
    Abstract: A semiconductor wafer processing susceptor for holding a wafer having an orientation notch during deposition of a layer on the wafer, having a placement surface for supporting the semiconductor wafer in the rear edge region of the wafer, the placement surface having a stepped outer delimitation, and an indentation of the outer delimitation of the placement surface for placement of the partial region of the edge region of the rear side of the wafer in which the orientation notch is located onto a partial region of the placement surface delimited by the indentation of the outer delimitation of the placement surface. The susceptor is used in a method for depositing a layer on a wafer having an orientation notch, and wafers made of monocrystalline silicon upon which layers are deposited using the susceptor have greater local flatness on both front and rear sides proximate the orientation notch.
    Type: Application
    Filed: September 9, 2016
    Publication date: April 27, 2017
    Inventors: Reinhard SCHAUER, Christian HAGER
  • Patent number: 9240316
    Abstract: Epitaxially coated semiconductor wafers are prepared by a process in which a semiconductor wafer polished at least on its front side is placed on a susceptor in a single-wafer epitaxy reactor and epitaxially coated on its polished front side at temperatures of 1000-1200° C., wherein, after coating, the semiconductor wafer is cooled in the temperature range from 1200° C. to 900° C. at a rate of less than 5° C. per second. In a second method for producing an epitaxially coated wafer, the wafer is placed on a susceptor in the epitaxy reactor and epitaxially coated on its polished front side at a deposition temperature of 1000-1200° C., and after coating, and while still at the deposition temperature, the wafer is raised for 1-60 seconds to break connections between susceptor and wafer produced by deposited semiconductor material before the wafer is cooled.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 19, 2016
    Assignee: SILTRONIC AG
    Inventors: Reinhard Schauer, Christian Hager
  • Patent number: 8304860
    Abstract: Epitaxially coated silicon wafers have a rounded and polished edge region and a region adjacent to the edge having a width of 3 mm on the front and rear sides, a surface roughness in edge region of 0.1-1.5 nm RMS relative to a spatial wavelength range of 10-80 ?m, and a variation of surface roughness of 1-10%. The wafer edges, after polishing, are examined for defects and roughness at the edge and surrounding region. Silicon wafers having a surface roughness of less than 1 nm RMS are pretreated in single wafer epitaxy reactors, first in a hydrogen atmosphere at a flow rate of 1-100 slm and in a second step, an etching medium with a flow rate of 0.5-5 slm is conducted onto the edge region of the wafer by a gas distribution device. The wafer is then epitaxially coated.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: November 6, 2012
    Assignee: Siltronic AG
    Inventors: Friedrich Passek, Frank Laube, Martin Pickel, Reinhard Schauer
  • Publication number: 20120270407
    Abstract: A susceptor for supporting a semiconductor wafer during deposition of a layer on a front side of the semiconductor wafer, the semiconductor wafer having a diameter D and, at its edge, a notch having a depth T, comprising: a ring-shaped placement area having an internal diameter d for the placement of the semiconductor wafer in the edge region of a rear side of the semiconductor wafer, wherein, with the semiconductor wafer having been placed, the relationship (D?d)/2<T is satisfied; and a protrusion of the area for the placement of semiconductor wafer in the region of the notch of the semiconductor wafer extending the placement area inward, and which completely underlays the notch of the semiconductor wafer.
    Type: Application
    Filed: March 13, 2012
    Publication date: October 25, 2012
    Applicant: SILTRONIC AG
    Inventors: Norbert Werner, Christian Hager, Reinhard Schauer
  • Patent number: 7935614
    Abstract: A multiplicity of silicon wafers polished at least on their front sides are provided and successively coated individually in an epitaxy reactor by a procedure whereby one of the wafers is placed on a susceptor in the epitaxy reactor, is pretreated under a hydrogen atmosphere at a first hydrogen flow rate, and with addition of an etching medium to the hydrogen atmosphere at a reduced hydrogen flow rate in a second step, is subsequently coated epitaxially on its polished front side, and removed from the reactor. An etching treatment of the susceptor follows a specific number of epitaxial coatings. Silicon wafers produced thereby have a global flatness value GBIR of 0.07-0.3 ?m relative to an edge exclusion of 2 mm.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: May 3, 2011
    Assignee: Siltronic AG
    Inventors: Reinhard Schauer, Norbert Werner
  • Patent number: 7922813
    Abstract: Epitaxially coated silicon wafers, are produced by epitaxially coating a multiplicity of wafers polished at least on their front sides, successively and individually in an epitaxy reactor, by placing a silicon wafer on a susceptor, pretreating under a hydrogen atmosphere followed by addition of an etching medium to the hydrogen atmosphere, coating epitaxially on the polished front side and removing the water from the epitaxy reactor. The susceptor is then heated, in each case, to a temperature of at least 1000° C. under a hydrogen atmosphere, and furthermore an etching treatment of the susceptor and a momentary coating of the susceptor with silicon are effected after a specific number of epitaxial coatings. Silicon wafers characterized by a parameter R30-1 mm of ?10 nm to +10 nm, determined at a distance of 1 mm from the edge of the silicon wafer are produced.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: April 12, 2011
    Assignee: Siltronic AG
    Inventors: Reinhard Schauer, Christian Hager
  • Publication number: 20110073041
    Abstract: In a method for producing epitaxially coated semiconductor wafers, a multiplicity of prepared, front side-polished semiconductor wafers are successively coated individually with an epitaxial layer on their polished front sides at temperatures of 800-1200° C. in a reactor, while supporting the prepared semiconductor wafer over a susceptor having a gas-permeable structure, on a ring placed on the susceptor which acts as a thermal buffer between the susceptor and the supported semiconductor wafer, the semiconductor wafer resting on the ring, and its backside facing but not contacting the susceptor, so that gaseous substances are delivered from a region over the backside of the semiconductor wafer by gas diffusion through the susceptor into a region over the backside of the susceptor, the semiconductor wafer contacting the ring only in an edge region of its backside, wherein no stresses measurable by means of photoelastic stress measurement (“SIRD”) occur in the semiconductor wafer.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 31, 2011
    Applicant: SILTRONIC AG
    Inventors: Reinhard Schauer, Norbert Werner
  • Patent number: 7838398
    Abstract: In a method for producing epitaxially coated semiconductor wafers, a multiplicity of prepared, front side-polished semiconductor wafers are successively coated individually with an epitaxial layer on their polished front sides at temperatures of 800-1200° C. in a reactor, while supporting the prepared semiconductor wafer over a susceptor having a gas-permeable structure, on a ring placed on the susceptor which acts as a thermal buffer between the susceptor and the supported semiconductor wafer, the semiconductor wafer resting on the ring, and its backside facing but not contacting the susceptor, so that gaseous substances are delivered from a region over the backside of the semiconductor wafer by gas diffusion through the susceptor into a region over the backside of the susceptor, the semiconductor wafer contacting the ring only in an edge region of its backside, wherein no stresses measurable by means of photoelastic stress measurement (“SIRD”) occur in the semiconductor wafer.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: November 23, 2010
    Assignee: Siltronic AG
    Inventors: Reinhard Schauer, Norbert Werner
  • Publication number: 20100224964
    Abstract: Epitaxially coated silicon wafers have a rounded and polished edge region and a region adjacent to the edge having a width of 3 mm on the front and rear sides, a surface roughness in edge region of 0.1-1.5 nm RMS relative to a spatial wavelength range of 10-80 ?m, and a variation of surface roughness of 1-10%. The wafer edges, after polishing, are examined for defects and roughness at the edge and surrounding region. Silicon wafers having a surface roughness of less than 1 nm RMS are pretreated in single wafer epitaxy reactors, first in a hydrogen atmosphere at a flow rate of 1-100 slm and in a second step, an etching medium with a flow rate of 0.5-5 slm is conducted onto the edge region of the wafer by a gas distribution device. The wafer is then epitaxially coated.
    Type: Application
    Filed: February 16, 2010
    Publication date: September 9, 2010
    Applicant: Siltronic AG
    Inventors: Friedrich Passek, Frank Laube, Martin Pickel, Reinhard Schauer
  • Patent number: 7659207
    Abstract: Epitaxially coated silicon wafers, are coated individually in an epitaxy reactor by placing a wafer on a susceptor, pretreating under a hydrogen atmosphere, in and then with addition of an etching medium, and coating epitaxially on a polished front side, wherein an etching treatment of the susceptor is effected after a specific number of epitaxial coatings, and the susceptor is then hydrophilized. Silicon wafer produced thereby have a maximum local flatness value SFQRmax of 0.01 ?m to 0.035 ?m relative to at least 99% of the partial regions of an area grid of measurement windows having a size of 26×8 mm2 on the front side of the silicon wafer with an edge exclusion of 2 mm.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: February 9, 2010
    Assignee: Siltronic AG
    Inventors: Reinhard Schauer, Thorsten Schneppensieper