Patents by Inventor Rentaro Kuroki

Rentaro Kuroki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230019846
    Abstract: An electric power management system includes a plurality of the vehicles, each including a battery, and a server that manages an exchange of electric power between the battery and an electric power system of an electric power company. The server detects a predetermined operation of a user that correlates with termination of the exchange of the electric power between the battery and the electric power system. When the predetermined operation is detected, the server calculates an estimated time when the exchange of the electric power between the battery and the electric power system is terminated, and executes a process of distributing the electric power to be exchanged by the vehicle in which the exchange of the electric power with the electric power system is estimated to be terminated at the calculated estimated time to another vehicle that performs the exchange of the electric power with the electric power system.
    Type: Application
    Filed: April 27, 2022
    Publication date: January 19, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato EHARA, Rentaro KUROKI, Shunsuke KOBUNA, Tatsuro KIYOHARA, Naohiro SEO, Takaharu TATEISHI
  • Publication number: 20230014362
    Abstract: An electric power management system is a system that performs an exchange of electric power with an electric power system of an electric power company that is a counterparty of the exchange of the electric power, and includes a plurality of the vehicles, each including a battery, and a server that manages an exchange of the electric power between the battery of each of the vehicles and the electric power system. The server limits the exchange of the electric power between the electric power system and the battery by an upper limit value or a lower limit value of a state of charge of the battery, and changes the upper limit value or the lower limit value in accordance with a degree of charge-discharge of the battery.
    Type: Application
    Filed: April 15, 2022
    Publication date: January 19, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato EHARA, Rentaro KUROKI, Shunsuke KOBUNA, Tatsuro KIYOHARA, Naohiro SEO, Takaharu TATEISHI
  • Publication number: 20230013438
    Abstract: An electric power management system is a system that performs an exchange of electric power with an electric power system of an electric power company that is a counterparty of the exchange of the electric power, and includes a plurality of the vehicles, each including a battery, and a server that manages an exchange of the electric power between the battery of each of the vehicles and the electric power system. The server limits the exchange of the electric power between the electric power system and the battery by an upper limit value or a lower limit value of a state of charge of the battery, and decreases the upper limit value or increases the lower limit value when a period during which the vehicle is continuously parked in a place where the vehicle can exchange the electric power is equal to or longer than a predetermined period.
    Type: Application
    Filed: April 15, 2022
    Publication date: January 19, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato EHARA, Rentaro KUROKI, Shunsuke KOBUNA, Tatsuro KIYOHARA, Naohiro SEO, Takaharu TATEISHI
  • Publication number: 20230019914
    Abstract: A control system includes a computer that controls each of multiple power balancing resources. The computer selects one or more control targets to be used for power balancing of an external electric power source from the power balancing resources, and controls each of the one or more control targets so as to cause the power storage device to charge or discharge for the power balancing. The computer preferentially selects the power balancing resource provided with a small-capacity power storage device as the control target for the power balancing of which duration is shorter than a predetermined time, and preferentially selects the power balancing resource provided with a large-capacity power storage device as the control target for the power balancing of which the duration is longer than the predetermined time.
    Type: Application
    Filed: May 17, 2022
    Publication date: January 19, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato EHARA, Rentaro KUROKI, Shunsuke KOBUNA, Tatsuro KIYOHARA, Naohiro SEO, Takaharu TATEISHI
  • Publication number: 20230004132
    Abstract: An electric power management system is a system that performs an exchange of electric power with an electric power system of an electric power company that is a counterparty of the exchange of the electric power, and includes a plurality of the vehicles, each including a battery, and a server that manages an exchange of the electric power between the battery of each of the vehicles and the electric power system. The server manages the exchange of the electric power for each vehicle group in which the vehicles are bundled, and configures the vehicle groups in advance such that distributions of the electric power supply and demand characteristics of the batteries of the vehicles included in the vehicle groups are the same or similar.
    Type: Application
    Filed: April 7, 2022
    Publication date: January 5, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato EHARA, Rentaro KUROKI, Shunsuke KOBUNA, Tatsuro KIYOHARA, Naohiro SEO, Takaharu TATEISHI
  • Publication number: 20230001820
    Abstract: An electric power management system is a system that performs an exchange of electric power with an electric power system of an electric power company that is a counterparty of the exchange of the electric power, and includes a plurality of the vehicles, each including a battery, and a server that manages an exchange of the electric power between the battery of each of the vehicles and the electric power system. The server manages the exchange of the electric power for each vehicle group in which the vehicles are bundled, and configures the vehicle group in advance by bundling the vehicles having the same or similar electric power supply and demand characteristics of the battery.
    Type: Application
    Filed: May 17, 2022
    Publication date: January 5, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato EHARA, Rentaro KUROKI, Shunsuke KOBUNA, Tatsuro KIYOHARA, Naohiro SEO, Takaharu TATEISHI
  • Publication number: 20220394482
    Abstract: A control system includes a computer configured to remotely control at least one of charging and discharging of a power storage device mounted on a control target. The computer is configured to transmit a first command indicating charging power or discharging power of the power storage device to the control target via each of a first communication path and a second communication path. The control system further includes a determination unit configured to determine whether or not any one of the first communication path and the second communication path is under a cyberattack by using a second command received by the control target via the first communication path when the computer transmits the first command, and a third command received by the control target via the second communication path when the computer transmits the first command.
    Type: Application
    Filed: April 4, 2022
    Publication date: December 8, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato EHARA, Rentaro KUROKI, Shunsuke KOBUNA, Tatsuro KIYOHARA, Naohiro SEO, Takaharu TATEISHI
  • Publication number: 20220300838
    Abstract: A behavior prediction device calculates a model predicted value obtained by statistically predicting future behavior of a vehicle based on past behavior history of the vehicle, and acquires a user input value representing scheduled future behavior of the vehicle. A first integrated error is obtained by integrating an error between the model predicted value and an actual value of the vehicle behavior during a predetermined period, and a second integrated error is obtained by integrating an error between the user input value and the actual value during the same period. The behavior prediction device determines that the user input value is a final predicted value of the future behavior when the first integrated error is smaller than the second integrated error, and determines that the model predicted value is the final predicted value when the first integrated error is equal to or larger than the second integrated error.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 22, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Rentaro KUROKI
  • Publication number: 20180298808
    Abstract: A cooling apparatus of an internal combustion engine according to the invention comprises a first passage formed in the cylinder block, through which the cooling medium flows for cooling between-bores portions, a second passage formed in the cylinder block, through which the cooling medium flows for cooling a bore-surrounding portion, and a cooling medium supplying mechanism for supplying the cooling medium to the first and second passages such that ability of the cooling medium for cooling the between-bore portions, is different from the ability of the cooling medium for cooling the bore-surrounding portion.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 18, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiko SUGIURA, Rentaro Kuroki, Ryo Michikawauchi, Yuji Miyoshi
  • Patent number: 9896103
    Abstract: A running control device of a vehicle includes an engine with cylinders, a clutch connecting/disconnecting a power transmission path between the engine and wheels, and a variable mechanism to vary an intake air amount sucked into the cylinders. The running control device performs a normal running mode by transmitting engine drive force to the wheels, a neutral inertia running mode by disconnecting the power transmission path between the engine and the wheels, and a cylinder resting inertia running mode by resting at least a part of the cylinders while the power transmission path between the engine and the wheels is connected. The running control device makes the intake air amount sucked into the cylinders larger at the time of return from the neutral inertia running mode to the normal running mode as compared to the case of return from the cylinder resting inertia running mode to the normal running mode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 20, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9874407
    Abstract: A heat exchanger includes: heat exchanger bodies arranged in parallel, each allowing a fluid to be cooled to flow therethrough in one direction; a housing that forms a coolant passage that allows a coolant to flow therethrough around each of the heat exchanger bodies; a coolant inlet portion and a coolant outlet portion located in a position corresponding to first ends of the heat exchanger bodies in a flow direction of the fluid to be cooled; a separating portion that separates the coolant passages in a position corresponding to second ends of the head exchanger bodies in the flow direction of the fluid to be cooled so that a communicating portion that allows the coolant passages to communicate with each other is left; and a flow passage area increasing portion that increases a flow passage area of the communicating portion. This structure achieves good cooling performance in the heat exchanger.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: January 23, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Sho Tomita, Rentaro Kuroki
  • Patent number: 9789874
    Abstract: A running control device has an engine coupling running mode enabling an engine brake running mode performed by coupling an engine and wheels with an engine brake applied by driven rotation of the engine, and an inertia running mode performed with an engine brake force lower than that of the engine brake running mode. The running control device includes a steering wheel steering angle as a condition of terminating the inertia running mode. The running control device performs a first inertia running mode with the rotation of the engine stopped and a second inertia running mode with the engine rotating. The first inertia running mode is terminated when the steering angle becomes equal to or greater than a predefined first determination value. The second inertia running mode is terminated when the steering angle becomes equal to or greater than a predefined second determination value larger than the first determination value.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 17, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9752971
    Abstract: A viscosity measuring apparatus is mounted on a vehicle provided with an engine, a cylinder pressure sensor configured to detect cylinder pressure which is inner pressure of a cylinder of the engine, a fuel injection valve configured to supply fuel to the engine, and a temperature sensor configured to detect temperature of a coolant of the engine. The viscosity measuring apparatus is provided with: an estimating device configured to calculate a cooling loss from a heating value of the cylinder based on the cylinder pressure detected by the cylinder pressure sensor and an input heating value of the cylinder, and to estimate viscosity of the coolant on the basis of the calculated cooling loss.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 5, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Sho Tomita, Rentaro Kuroki
  • Patent number: 9694821
    Abstract: An upper limit value of an upward gradient of a road surface for starting neutral coasting is set to be larger than an upper limit of the upward gradient of the road surface for starting free-run coasting, so, when the upward gradient is relatively large and a coasting distance is short, the vehicle is caused to travel in the neutral coasting, and stop and restart of the engine are not carried out. Therefore, a decrease in drivability of the vehicle is suppressed. When the upward gradient is relatively small and the coasting distance is long, the vehicle is caused to travel in the free-run coasting, and supply of fuel to the engine is stopped, so fuel economy of the vehicle is obtained. Thus, it is possible to achieve both fuel economy and drivability of the vehicle during coasting on an upward gradient.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 4, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9656676
    Abstract: A running control device of a vehicle including an engine, a connecting/disconnecting device separating the engine and wheels, and a transmission transmitting power of the engine toward the wheels, the running control device of a vehicle being configured to execute a normal running mode performed by using the power of the engine with the engine and the wheels coupled, a free-run inertia running mode that is an inertia running mode performed by separating the engine and the wheels and stopping the engine during running, and a neutral inertia running mode that is an inertia running mode performed by separating the engine and the wheels and operating the engine in a self-sustaining manner during running, the running control device of a vehicle setting a gear ratio of the transmission on a high vehicle speed side in the case of return from the free-run inertia running mode to the normal running mode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 23, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki Mitsuyasu, Jonggap Kim, Rentaro Kuroki, Takuya Hirai, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9656670
    Abstract: A running control device of a vehicle includes an engine, a connecting/disconnecting device separating the engine and wheels, and a transmission transmitting power of the engine toward the wheels, the running control device being configured to execute a normal running-mode performed by using the power of the engine with the engine and the wheels coupled, a free-run inertia running-mode that is performed by separating the engine and the wheels and stopping the engine during running, and a neutral inertia running-mode that is a performed by separating the engine and the wheels and operating the engine in a self-sustaining manner during running, the running control device setting a gear ratio of the transmission on a low vehicle speed side in the case of return from the free-run inertia running-mode to the normal running-mode as compared to the case of return from the neutral inertia running-mode to the normal running-mode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 23, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki Mitsuyasu, Jonggap Kim, Rentaro Kuroki, Takuya Hirai, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9650046
    Abstract: A running control device of a vehicle includes an engine, a clutch separating the engine and wheels, and a torque converter with a lockup clutch transmitting power of the engine toward the wheels, the running control device of a vehicle is configured to execute a neutral inertia running mode that is an inertia running mode performed while the engine and the wheels are separated and a cylinder resting inertia running mode performed by stopping operation in at least some of cylinders of the engine while the engine and the wheels are coupled, the lockup clutch has a weak engagement force while the neutral inertia running mode is performed as compared to while the cylinder resting inertia running mode is performed.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 16, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jonggap Kim, Masaki Mitsuyasu, Rentaro Kuroki, Takuya Hirai, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9623870
    Abstract: A running control device of a vehicle includes an engine and a brake booster amplifying a brake force by forming a negative pressure in a negative pressure tank by rotation of the engine. The running control device is configured to execute an engine brake running mode performed with the engine coupled to wheels such that an engine brake is applied by driven rotation of the engine and an inertia running mode performed with an engine brake force made lower than that of the engine brake running mode. The running control device executes a first inertia running mode performed with the rotation of the engine stopped and a second inertia running mode performed with the engine kept rotating as the inertia running mode in accordance with predefined respective execution conditions. The running control device comprises a prediction portion configured to predict a necessity of the negative pressure.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 18, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9598084
    Abstract: A running control device of a vehicle executes a normal running mode with an engine coupled to drive wheels, a first inertia running mode with the engine stopped during running and an engine brake force reduced as compared to the normal running mode, and a second inertia running mode with the engine rotating during running and the engine brake force reduced as compared to the normal running mode. A determining portion determines a necessity of a brake negative pressure during the first or second inertia running mode. The necessity of the brake negative pressure is a condition for returning from the first inertia running mode and the second inertia running mode to the normal running mode. An upper limit value of the necessity of the brake negative pressure for returning from the first inertia running mode is smaller than that for returning from the second inertia running mode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9598082
    Abstract: In consideration of an amplification effect of a braking force at the time of brake operation, upper-limits (?, ?) of a brake operation force (Brk) with which the execution of free-run coasting and neutral coasting is started may be different, on the basis of whether or not a brake booster can be filled with a negative pressure. Therefore, while the braking force at the time of brake operation is secured, the range of the brake operation force (Brk) with which coasting is executed can be enlarged, and an improvement in fuel economy can be made.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: March 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita