Patents by Inventor Rentaro Kuroki

Rentaro Kuroki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150284004
    Abstract: A running control device of a vehicle includes an engine, a clutch separating the engine and wheels, and a torque converter with a lockup clutch transmitting power of the engine toward the wheels, the running control device of a vehicle is configured to execute a neutral inertia running mode that is an inertia running mode performed while the engine and the wheels are separated and a cylinder resting inertia running mode performed by stopping operation in at least some of cylinders of the engine while the engine and the wheels are coupled, the lockup clutch has a weak engagement force while the neutral inertia running mode is performed as compared to while the cylinder resting inertia running mode is performed.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 8, 2015
    Inventors: Jonggap Kim, Masaki Mitsuyasu, Rentaro Kuroki, Takuya Hirai, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150274168
    Abstract: A running control device of a vehicle including an engine, a brake operation member, and a brake booster, is configured to execute an engine brake running mode performed with the engine coupled to wheels and an inertia running mode performed with an engine brake force made lower than that in the engine brake running mode. The running control device executes first and second inertia running modes. The first inertia running mode is terminated when a brake request amount becomes equal to or greater than a predefined first determination value while the first inertia running mode is performed. The second inertia running mode is terminated and a return to the engine brake running mode is made when the brake request amount becomes equal to or greater than a predefined second determination value larger than the first determination value while the second inertia running mode is performed.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 1, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita, Yasunari Kido
  • Publication number: 20150274166
    Abstract: A running control device of a vehicle includes an engine with a plurality of cylinders, and a clutch connecting/disconnecting a power transmission path between the engine and wheels, the running control device of a vehicle performing during an inertia running mode a neutral inertia running mode performed with the power transmission path between the engine and the wheels disconnected while the engine is kept operated, and a cylinder resting inertia running mode performed by resting at least a part of the cylinders of the engine while the power transmission path between the engine and the wheels is connected, the running control device of a vehicle increasing an operation region of performing the neutral inertia running mode in an operation region of performing the inertia running mode when idle learning performed in an idle operation state of the engine is incomplete, as compared to after completion of the idle learning.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 1, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya HIRAI, Rentaro KUROKI, Masaki MITSUYASU, Jonggap KIM, Masaki MATSUNAGA, Yasunari KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150266480
    Abstract: A running control device is configured to execute an engine coupling running mode performed with an engine and wheels connected by a connecting/disconnecting device, a neutral inertia running mode performed with the engine separated from the wheels by the connecting/disconnecting device while the engine is supplied with fuel and allowed to perform self-sustaining rotation, and a free-run inertia running mode performed with the engine separated from the wheels by the connecting/disconnecting device while fuel supply to the engine is stopped to stop rotation. The neutral inertia running mode is terminated when an operation amount of the accelerator pedal becomes equal to or greater than a predefined first determination value. The free-run inertia running mode is terminated when an operation amount of the accelerator pedal becomes equal to or greater than a predefined second determination value larger than the first determination value.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 24, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150211407
    Abstract: This invention provides a coolant composition for an internal combustion engine that can improve the energy efficiency of an internal combustion engine and a method for operating an internal combustion engine using such coolant composition. The coolant composition for an internal combustion engine of the invention has kinematic viscosity of 8.5 to 3,000 mm2/sec at 25° C. and 0.3 to 1.3 mm2/sec at 100° C. The method for operating an internal combustion engine of the invention is carried out with the use of such composition.
    Type: Application
    Filed: June 8, 2012
    Publication date: July 30, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya Hirai, Yuichi Shimasaki, Rentaro Kuroki, Syou Tomita, Minoru Yamashita, Kazuhiro Miyajima, Keiji Hayashi
  • Publication number: 20150166065
    Abstract: In consideration of an amplification effect of a braking force at the time of brake operation, there is provided a difference between upper-limits (?, ?) of a brake operation force (Brk) with which the execution of free-run coasting and neutral coasting is started, on the basis of whether or not a brake booster (42) can be filled with a negative pressure. Therefore, while the braking force at the time of brake operation is secured, the range of the brake operation force (Brk) with which coasting is executed can be enlarged, and an improvement in fuel economy can be made.
    Type: Application
    Filed: October 21, 2013
    Publication date: June 18, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150166066
    Abstract: A controller is capable of controlling a coupled engine running mode, in which an engine is coupled to wheels and an engine brake is activated by driven rotation of the engine, and a coasting mode, in which an engine brake force is reduced with respect to that in the coupled engine running mode with mode with the engine brake on, and starts the coasting mode on the basis of the steering angle of a steering member. The controller starts the execution of a first coasting mode when the steering angle is equal to or less than a preset upper limit value and starts the execution of a second coasting mode when the steering angle is greater than the upper limit value. In the first coasting mode, the engine rotation is stopped, and in the second coasting mode, the engine remains rotating.
    Type: Application
    Filed: October 11, 2013
    Publication date: June 18, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150158491
    Abstract: An upper limit value of an upward gradient of a road surface for starting neutral coasting is set to be larger than an upper limit of the upward gradient of the road surface for starting free-run coasting, so, when the upward gradient is relatively large and a coasting distance is short, the vehicle is caused to travel in the neutral coasting, and stop and restart of the engine are not carried out. Therefore, a decrease in drivability of the vehicle is suppressed. When the upward gradient is relatively small and the coasting distance is long, the vehicle is caused to travel in the free-run coasting, and supply of fuel to the engine is stopped, so fuel economy of the vehicle is obtained. Thus, it is possible to achieve both fuel economy and drivability of the vehicle during coasting on an upward gradient.
    Type: Application
    Filed: October 15, 2013
    Publication date: June 11, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150151761
    Abstract: A drive control device for a vehicle including an engine and a clutch device provided in a power transmission path between the engine and a drive wheel includes: a normal traveling unit causing the vehicle to travel while the engine is connected to the drive wheel; a free-run coasting unit disconnecting the engine from the drive wheel during traveling and causing the vehicle to coast while the engine is stopped; a neutral coasting unit disconnecting the engine from the drive wheel during traveling and causing the vehicle to coast while the engine is autonomously operated; and a coasting switching control unit setting an upper limit value of an upward gradient of a road surface, at which the neutral coasting is stopped, such that the upper limit value is larger than an upper limit value of the upward gradient of the road surface, at which the free-run coasting is stopped.
    Type: Application
    Filed: October 15, 2013
    Publication date: June 4, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150101400
    Abstract: A viscosity measuring apparatus is mounted on a vehicle provided with an engine, a cylinder pressure sensor configured to detect cylinder pressure which is inner pressure of a cylinder of the engine, a fuel injection valve configured to supply fuel to the engine, and a temperature sensor configured to detect temperature of a coolant of the engine. The viscosity measuring apparatus is provided with: an estimating device configured to calculate a cooling loss from a heating value of the cylinder based on the cylinder pressure detected by the cylinder pressure sensor and an input heating value of the cylinder, and to estimate viscosity of the coolant on the basis of the calculated cooling loss.
    Type: Application
    Filed: June 18, 2012
    Publication date: April 16, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Sho Tomita, Rentaro Kuroki
  • Patent number: 8989990
    Abstract: A working gas circulation type engine includes a combustion chamber in which a working gas having a ratio of specific heats higher than that of air can be expanded by combustion of a fuel, a circulation path capable of circulating a gas containing the working gas from a gas exhaust side to a gas suction side of the combustion chamber and supplying the gas containing the working gas to the combustion chamber again, and a control device that changes a control parameter for controlling the combustion of the fuel based on a ratio of specific heats of the gas circulating in the circulation path. Therefore, there can be provided the working gas circulation type engine capable of obtaining a stable output.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: March 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Daisaku Sawada, Akira Kato
  • Patent number: 8943806
    Abstract: In a working gas circulation engine, water vapor contained in exhaust gas after combustion is separated and removed at higher efficiency as compared with the conventional technology, the influence of remaining water vapor is prevented from reducing the ratio of specific heats of working gas and deteriorating the thermal efficiency of the engine. A working gas circulation engine which comprises a circulation passage part which connects an inlet port communicated to a combustion chamber and an exhaust port communicated to the combustion chamber in the exterior of the combustion chamber, supplies fuel, oxygen, and working gas to the combustion chamber to burn the fuel in the combustion chamber, and supplies the working gas contained in the exhaust gas discharged through the exhaust port from the combustion chamber to the combustion chamber through the circulation passage part and the inlet port.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Daisaku Sawada, Akira Kato
  • Publication number: 20140130777
    Abstract: [Summary] [Subject] A low-cost and brief method to detect an airtight failure in a working-gas circulating type gas engine with sufficient accuracy and a working-gas circulating type gas engine using the method should be provided. [Means for Solution] In a working-gas circulating type gas engine, an extra predetermined quantity 1 of at least one of fuel gas, oxidizer gas, and working gas is supplied as surplus gas into a circulation passage. Based on the difference between this predetermined quantity 1 and increment of this predetermined quantity 1 and the increment of the quantity of the gas in the circulation passage separately detected by a gas quantity detecting means, the existence of an airtight failure in the engine is judged.
    Type: Application
    Filed: July 11, 2011
    Publication date: May 15, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Daisaku Sawada, Akira Kato
  • Patent number: 8662057
    Abstract: The working gas circulation engine includes a circulation route capable of circulating gas containing the working gas from an exhaust side to an intake side of a combustion chamber and resupplying to the combustion chamber and provided with a removing device to remove a product generated with a reaction from the circulating gas, a supplying device capable of supplying plural kinds of reactant gas to the combustion chamber or the circulation route, a pressure detecting device capable of detecting pressure in the circulation route, and a control unit that controls supply amount of at least one kind of the reactant gas to be supplied from the supplying device based on the pressure in the circulation route detected by the pressure detecting device, and performs pressure control to adjust the pressure in the circulation route.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: March 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Daisaku Sawada, Akira Kato
  • Patent number: 8656701
    Abstract: A control device applied to a system having an engine configured such that an expansion ratio can be changed is characterized to comprise an expansion ratio acquisition part for acquiring the expansion ratio, and a temperature estimation part for estimating a temperature of an exhaust gas discharged from the engine or a member positioned in a passage for the exhaust gas.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: February 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisuke Akihisa, Koichi Kimura, Fumito Chiba, Rentaro Kuroki, Yukihiro Nakasaka
  • Publication number: 20130333356
    Abstract: In a working gas circulation engine, water vapor contained in exhaust gas after combustion is separated and removed at higher efficiency as compared with the conventional technology, the influence of remaining water vapor is prevented from reducing the ratio of specific heats of working gas and deteriorating the thermal efficiency of the engine. A working gas circulation engine which comprises a circulation passage part which connects an inlet port communicated to a combustion chamber and an exhaust port communicated to the combustion chamber in the exterior of the combustion chamber, supplies fuel, oxygen, and working gas to the combustion chamber to burn the fuel in the combustion chamber, and supplies the working gas contained in the exhaust gas discharged through the exhaust port from the combustion chamber to the combustion chamber through the circulation passage part and the inlet port.
    Type: Application
    Filed: March 7, 2011
    Publication date: December 19, 2013
    Inventors: Rentaro Kuroki, Daisaku Sawada, Akira Kato
  • Patent number: 8453623
    Abstract: A gas circulation engine includes a combustion chamber to which high-pressure fuel in a first high-pressure fuel supply passage, an oxidant and working gas are supplied; a circulation path that connects an intake-side portion and an exhaust-side portion of the combustion chamber to each other; a fuel bleed-off tank into which the high-pressure fuel in the first high-pressure fuel supply passage is bled off; a fuel bleed-off valve that permits or shuts off communication between the first high-pressure fuel supply passage and the fuel bleed-off tank; and a fuel bleed-off control unit that permits communication between the first high-pressure fuel supply passage and the fuel bleed-off tank by opening the fuel bleed-off valve when the engine is stopped, the communication between the first high-pressure fuel supply passage and the fuel bleed-off tank being shut off during operation of the engine.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 4, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Daisaku Sawada, Shinichi Mitani
  • Patent number: 8371277
    Abstract: In the present invention, in a control system for a spark ignition internal combustion engine, when a catalyst is not sufficiently active, the ignition timing is advanced to be earlier than MBT to decrease the quantity of hydrocarbons (HC) discharged from the internal combustion engine, and oxygen is supplied to the exhaust gas upstream of the catalyst to thereby oxidize carbon monoxide (CO) discharged from the internal combustion engine. According to this invention, exhaust emissions emitted before activation of the exhaust gas purification apparatus can be decreased as much as possible, and early activation of the catalyst can be achieved by making use of heat generated by oxidation reaction of carbon monoxide (CO).
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: February 12, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nao Murase, Shogo Suda, Nobuhiko Koga, Takahiko Fujiwara, Rentaro Kuroki
  • Patent number: 8360035
    Abstract: During starting of an engine that has a circulation path through which argon, used as working gas, is circulated back to a combustion chamber and that uses hydrogen as fuel during operation, oxygen is supplied in such a manner that the oxygen supply ratio is higher than that used during normal operation. Thus, the entirety of hydrogen supplied into the combustion chamber reacts with oxygen and is burned. When the engine is being started, because gas is not turbulent enough, hydrogen and oxygen are likely to be mixed poorly. Therefore, when oxygen is supplied in such a manner that the ratio of oxygen supply amount to the hydrogen supply amount is higher than the theoretical ratio, even if oxygen and hydrogen are not mixed so well, the chance that hydrogen contacts oxygen is increased. As a result, combustion takes place in a more appropriate manner, which improves the engine startability.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: January 29, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Daisaku Sawada
  • Patent number: 8364386
    Abstract: A stop-start control apparatus for a port injection engine (1) including cylinders (2) stops the engine (1) by stopping fuel injection from each injector (13), when a predetermined stop condition is fulfilled. An estimated position of a piston (5) in each cylinder (2) after the engine (1) is stopped is determined during a stop process period from when the predetermined stop condition is fulfilled until when the engine (1) is stopped, and a compression stroke cylinder in which the piston (5) is to be stopped in a compression stroke is identified. An amount of fuel to be injected from the injector (13) for the compression stroke cylinder during the stop process period is set based on the estimated position of the piston (5) in the compression stroke cylinder. The injector (13) injects the fuel in the set fuel amount so that the fuel is contained in the compression stroke cylinder when the engine is stopped.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: January 29, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Hiroki Ichinose, Takayuki Otsuka