Patents by Inventor Reza Ghandi

Reza Ghandi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200194546
    Abstract: Aspects of the present disclosure are directed toward designs and methods of manufacturing semiconductor devices, such as semiconductor charge balanced (CB) devices or semiconductor super-junction (SJ) devices. The disclosed designs and methods are useful in the manufacture of CB devices, such as planar CB metal-oxide semiconductor field-effect transistor (MOSFET) devices, as well as other devices.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Inventors: Stephen Daley Arthur, Reza Ghandi, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 10636660
    Abstract: To manufacture a super-junction (SJ) layer of a SJ device, an epitaxial (epi) layer having a first conductivity type may be formed on an underlying layer, which may be formed from a wide-bandgap material. A first mask may then be formed onto a first portion of the epi layer, and a first set of SJ pillars may be selectively implanted into a second portion of the epi layer exposed by the first mask. Then, a second mask may be formed on the second portion of the epi layer that is self-aligned relative to the first mask. After removing the first mask, a second set of SJ pillars may be selectively implanted into the first portion of the epi layer. Removing the second mask may then yield the SJ layer.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 28, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reza Ghandi, Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld
  • Publication number: 20200105944
    Abstract: A charge balance (CB) field-effect transistor (FET) device may include a CB layer defined in a first epitaxial (epi) layer having a first conductivity type. The CB layer may include a set of CB regions having a second conductivity type. The CB FET device may further include a device layer defined in a device epi layer having the first conductivity type disposed on the CB layer. The device layer may include a highly-doped region having the second conductivity type. The CB FET device may also include a CB bus region having the second conductivity type that extends between and electrically couples a CB region of the set of CB regions of the CB layer to the highly-doped region of the device layer.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20200105879
    Abstract: The subject matter disclosed herein relates to wide band gap semiconductor power devices and, more specifically, to high-energy implantation masks used in forming silicon carbide (SiC) power devices, such as charge balanced (CB) SiC power devices. An intermediate semiconductor device structure includes a SiC substrate layer having a first conductivity type and silicon carbide (SiC) epitaxial (epi) layer having the first conductivity type disposed on the SiC substrate layer. The intermediate device structure also includes a silicon high-energy implantation mask (SiHEIM) disposed directly on a first portion of the SiC epi layer and having a thickness between 5 micrometers (?m) and 20 ?m. The SiHEIM is configured to block implantation of the first portion of the SiC epi layer during a high-energy implantation process having an implantation energy greater than 500 kiloelectron volts (keV).
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: William Gregg Hawkins, Reza Ghandi, Christopher Bauer, Shaoxin Lu
  • Publication number: 20200105529
    Abstract: To manufacture a super-junction (SJ) layer of a SJ device, an epitaxial (epi) layer having a first conductivity type may be formed on an underlying layer, which may be formed from a wide-bandgap material. A first mask may then be formed onto a first portion of the epi layer, and a first set of SJ pillars may be selectively implanted into a second portion of the epi layer exposed by the first mask. Then, a second mask may be formed on the second portion of the epi layer that is self-aligned relative to the first mask. After removing the first mask, a second set of SJ pillars may be selectively implanted into the first portion of the epi layer. Removing the second mask may then yield the SJ layer.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 2, 2020
    Inventors: Reza Ghandi, Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld
  • Publication number: 20200105925
    Abstract: A charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 10608079
    Abstract: An integrated circuit includes a silicon carbide (SiC) epitaxial layer disposed on a SiC layer, wherein the SiC epitaxial layer has a first conductivity-type and the SiC layer has a second conductivity-type that is opposite to the first conductivity-type. The integrated circuit also includes a junction isolation feature disposed in the SiC epitaxial layer and having the second conductivity-type. The junction isolation feature extends vertically through a thickness of the SiC epitaxial layer and contacts the SiC layer, and wherein the junction isolation feature has a depth of at least about 2 micrometers (?m).
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: March 31, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reza Ghandi, David Alan Lilienfeld, Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 10600649
    Abstract: A method of manufacturing a semiconductor device including performing a first implantation in a semiconductor layer via ion implantation forming a first implantation region and performing a second implantation in the semiconductor layer via ion implantation forming a second implantation region. The first and second implantation overlap with one another and combine to form a connection region extending into the semiconductor layer by a predefined depth.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: March 24, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, Reza Ghandi, David Alan Lilienfeld
  • Patent number: 10586846
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 10, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20190245035
    Abstract: An integrated circuit includes a silicon carbide (SiC) epitaxial layer disposed on a SiC layer, wherein the SiC epitaxial layer has a first conductivity-type and the SiC layer has a second conductivity-type that is opposite to the first conductivity-type. The integrated circuit also includes a junction isolation feature disposed in the SiC epitaxial layer and having the second conductivity-type. The junction isolation feature extends vertically through a thickness of the SiC epitaxial layer and contacts the SiC layer, and wherein the junction isolation feature has a depth of at least about 2 micrometers (?m).
    Type: Application
    Filed: February 6, 2018
    Publication date: August 8, 2019
    Inventors: Reza Ghandi, David Alan Lilienfeld, Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20190140048
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Application
    Filed: June 18, 2018
    Publication date: May 9, 2019
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 10243039
    Abstract: A super junction (SJ) device may include one or more charge balance (CB) layers. Each CB layer may include an epitaxial (epi) layer having a first conductivity type and a plurality of charge balance (CB) regions having a second conductivity type. Additionally, the SJ device may include a connection region having the second conductivity type that extends from a region disposed in a top surface of a device layer of the SJ device to one or more of the CB regions. The connection region may enable carriers to flow directly from the region to the one or more CB regions, which may decrease switching losses of the SJ device.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: March 26, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld, Reza Ghandi
  • Publication number: 20190088479
    Abstract: A method of manufacturing a semiconductor device including performing a first implantation in a semiconductor layer via ion implantation forming a first implantation region and performing a second implantation in the semiconductor layer via ion implantation forming a second implantation region. The first and second implantation overlap with one another and combine to form a connection region extending into the semiconductor layer by a predefined depth.
    Type: Application
    Filed: April 13, 2018
    Publication date: March 21, 2019
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, Reza Ghandi, David Alan Lilienfeld
  • Publication number: 20180190791
    Abstract: The present disclosure relates to a symmetrical, punch-through transient voltage suppression (TVS) device includes a mesa structure disposed on a semiconductor substrate. The mesa structure includes a first semiconductor layer of a first conductivity-type, a second semiconductor layer of a second conductivity-type disposed on the first semiconductor layer, and a third semiconductor layer of the first conductive-type disposed on the second semiconductor layer. The mesa structure also includes beveled sidewalls forming mesa angles with respect to the semiconductor substrate and edge implants disposed at lateral edges of the second semiconductor layer. The edge implants including dopants of the second conductive-type are configured to cause punch-through to occur in a bulk region and not in the lateral edges of the second semiconductor layer.
    Type: Application
    Filed: January 4, 2017
    Publication date: July 5, 2018
    Inventors: Victor Mario Torres, Reza Ghandi, David Alan Lilienfeld, Avinash Srikrishnan Kashyap, Alexander Viktorovich Bolotnikov
  • Patent number: 10014388
    Abstract: The present disclosure relates to a symmetrical, punch-through transient voltage suppression (TVS) device includes a mesa structure disposed on a semiconductor substrate. The mesa structure includes a first semiconductor layer of a first conductivity-type, a second semiconductor layer of a second conductivity-type disposed on the first semiconductor layer, and a third semiconductor layer of the first conductive-type disposed on the second semiconductor layer. The mesa structure also includes beveled sidewalls forming mesa angles with respect to the semiconductor substrate and edge implants disposed at lateral edges of the second semiconductor layer. The edge implants including dopants of the second conductive-type are configured to cause punch-through to occur in a bulk region and not in the lateral edges of the second semiconductor layer.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: July 3, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Victor Mario Torres, Reza Ghandi, David Alan Lilienfeld, Avinash Srikrishnan Kashyap, Alexander Viktorovich Bolotnikov
  • Patent number: 10002920
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 19, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20180166531
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20170278924
    Abstract: A super junction (SJ) device may include one or more charge balance (CB) layers. Each CB layer may include an epitaxial (epi) layer having a first conductivity type and a plurality of charge balance (CB) regions having a second conductivity type. Additionally, the SJ device may include a connection region having the second conductivity type that extends from a region disposed in a top surface of a device layer of the SJ device to one or more of the CB regions. The connection region may enable carriers to flow directly from the region to the one or more CB regions, which may decrease switching losses of the SJ device.
    Type: Application
    Filed: March 22, 2016
    Publication date: September 28, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld, Reza Ghandi
  • Patent number: 9735237
    Abstract: The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to active area designs for SiC super-junction (SJ) power devices. A SiC-SJ device includes an active area having one or more charge balance (CB) layers. Each CB layer includes a semiconductor layer having a first conductivity-type and a plurality of floating regions having a second conductivity-type disposed in a surface of the semiconductor layer. The plurality of floating regions and the semiconductor layer are both configured to substantially deplete to provide substantially equal amounts of charge from ionized dopants when a reverse bias is applied to the SiC-SJ device.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: August 15, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Almern Losee, Alexander Viktorovich Bolotnikov, Reza Ghandi
  • Patent number: 9704949
    Abstract: A charge-balanced (CB) diode may include one or more CB layers. Each CB layer may include an epitaxial layer having a first conductivity type and a plurality of buried regions having a second conductivity type. Additionally, the CB diode may include an upper epitaxial layer having the first conductivity type that is disposed adjacent to an uppermost CB layer of the one or more CB layers. The upper epitaxial layer may also include a plurality of junction barrier (JBS) implanted regions having the second conductivity type. Further, the CB diode may include a Schottky contact disposed adjacent to the upper epitaxial layer and the plurality of JBS implanted regions.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 11, 2017
    Assignee: General Electric Company
    Inventors: Reza Ghandi, Peter Almern Losee, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld