Patents by Inventor Richard A. Carr

Richard A. Carr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020123152
    Abstract: A miniaturized integrated sensor (50) useful for indicating the presence of a sample analyte is disclosed. The sensor (50) has a platform (52) with an upper surface (53) and a detector (62), light source (60), waveguide (58), and reflective fixtures (60,62) embedded in the platform (52). The light source (60) is preferably a light emitting diode and sits in a cup-shaped dimple (68) that directs light from the light source (60) toward one of the reflective fixtures (64) to uniformly distribute light across the waveguide (58). The waveguide (58) is coupled to an upper surface (53) of the sensor platform (52) and is coated with a thin film of indicator chemistry (70) which interacts with the sample analyte to produce optic signal changes that are measurable by the detector (62). A lead frame (51) in the platform (52) has pins (54, 55, 56) which provide the interface to the outside world.
    Type: Application
    Filed: December 4, 2001
    Publication date: September 5, 2002
    Inventors: Richard A. Carr, Jose L. Melendez, Kirk S. Laney
  • Patent number: 6415235
    Abstract: A sensor control and data analysis system (100) for detecting and analyzing various (bio)chemical properties of a given sample substance (107) using an integrated SPR sensor (50) or other miniaturized sensor configuration. In one embodiment, raw sensor data from the sensing device (105) is transferred to a remote processing system (111), such as a desktop computer, having a display (125), keyboard or other user control and data entry device (123), internal storage area (127), internal microprocessor (117) and a communications means (129). The processing system (111) runs a software application program (115) that receives the raw sample data and perform qualitative and quantitative analysis to render meaningful information about the sample substance.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: July 2, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Dwight U. Bartholomew, Jose L. Melendez, Richard A. Carr
  • Patent number: 6399000
    Abstract: A non-planar formed body of particulate thermal insulating material is made by a method in which particulate insulating material is introduced into a porous envelope (1) and the envelope with the particulate insulating material is located in a forming means (2, 3). The forming means is operated such that compaction of the particulate material in the envelope is effected into a body of desired non-planar form, accompanied by a downwardly-directed flow of the particulate material towards at least one edge (7, 8) of the body (4). In this way a required density distribution of compacted material in the body is achieved.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: June 4, 2002
    Assignee: Microtherm International Limited
    Inventor: Geoffrey John Richard Carr
  • Patent number: 6386894
    Abstract: Method and apparatus for electrically interconnecting a sensor (104) in a beverage dispensing apparatus (102) to a sensor control system contained within a separate unit concurrent with attachment of said beverage dispensing apparatus to said separate unit are disclosed, comprising locking members (114) disposed on the beverage dispensing apparatus, a base plate (200) on the separate unit having receptacles (210) adapted to matably engage and align the beverage dispensing apparatus, a plurality of base plate conductor members (212), disposed on the lower surface of the base plate and electrically coupled to the sensor control system, a plurality of dispenser apparatus conductor members (118), electrically coupled (202) to the sensor and disposed on an upper surface (112) of the beverage dispensing apparatus such that as the beverage dispensing apparatus is matably engaged with the base plate the conductor members are brought into alignment and communicative contact.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: May 14, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: Richard A. Carr
  • Patent number: 6374845
    Abstract: Disclosed is a method of automatically sensing and controlling beverage quality for soft drinks from a fountain dispenser, for example, comprising the steps of supplying a first fluid, such as water or carbonated water, wherein the flow of the first fluid is controlled by a first valve, supplying a second fluid, mixing the first fluid and the second fluid, passing a sample of the mixture of the first fluid and the second fluid onto a sensing surface of a fixed optic sensor, measuring one or more properties of the sample, such as, for example, refractive index, temperature, and pressure, controlling the first valve based on the one or more properties, and dispensing the mixture. The first valve may be proportionally enlarged and reduced or it may selectively opened and closed pursuant to a desired duty cycle.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: April 23, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr, Jerome L. Elkind
  • Patent number: 6326210
    Abstract: A miniaturized integrated sensor (50) useful for indicating the presence of a sample analyte is disclosed. The sensor (50) has a platform (52) with an upper surface (53) and a detector (62), light source (60), waveguide (58), and reflective fixtures (60,62) embedded in the platform (52). The light source (60) is preferably a light emitting diode and sits in a cup-shaped dimple (68) that directs light from the light source (60) toward one of the reflective fixtures (64) to uniformly distribute light across the waveguide (58). The waveguide (58) is coupled to an upper surface (53) of the sensor platform (52) and is coated with a thin film of indicator chemistry (70) which interacts with the sample analyte to produce optic signal changes that are measurable by the detector (62). A lead frame (51) in the platform (52) has pins (54, 55, 56) which provide the interface to the outside world.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: December 4, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Carr, Jose L. Melendez, Kirk S. Laney
  • Patent number: 6326612
    Abstract: Disclosed is a sensing system and method utilizing a sensor cartridge (10) for making analytical measurements regarding one or more samples (50) of interest, the cartridge (10) comprising an opaque housing (12) having an opening (32), the opening (32) allowing access to one or more electrically conductive contacts (34) and one or more fluidic connectors (36) disposed within the housing (12) and mechanically aligned to the electrically conductive contacts (34), a flow cell (56) having one or more channels connected to the one or more fluidic connectors (36), and a fixed optic sensor (68, 58, 72, 74) disposed within said housing (12) and aligned to a sensing surface on the flow cell. The fixed optic sensor may be, for example, a surface plasmon resonance sensor, a critical angle sensor, or a fluorescence-based sensor. In one embodiment of the present invention, the one or more electrically conductive contacts (32) comprise card-edge contacts (34).
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: December 4, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Jerome L. Elkind, Richard A. Carr, Jose L. Melendez
  • Publication number: 20010034151
    Abstract: Method and apparatus for electrically interconnecting a sensor (104) in a beverage dispensing apparatus (102) to a sensor control system contained within a separate unit concurrent with attachment of said beverage dispensing apparatus to said separate unit are disclosed, comprising locking members (114) disposed on the beverage dispensing apparatus, a base plate (200) on the separate unit having receptacles (210) adapted to matably engage and align the beverage dispensing apparatus, a plurality of base plate conductor members (212), disposed on the lower surface of the base plate and electrically coupled to the sensor control system, a plurality of dispenser apparatus conductor members (118), electrically coupled (202) to the sensor and disposed on an upper surface (112) of the beverage dispensing apparatus such that as the beverage dispensing apparatus is matably engaged with the base plate the conductor members are brought into alignment and communicative contact.
    Type: Application
    Filed: February 7, 2001
    Publication date: October 25, 2001
    Inventor: Richard A. Carr
  • Patent number: 6191847
    Abstract: A fixed optic sensor system (200) comprising a sensor system (210), and electronic sub-system (205) and a communications means (215). The system can be used for detecting the presence of various sample (236) properties and in that regard has widespread application by leveraging off various miniaturized sensor configurations including surface plasmon resonance (50), fluorescence (80), light transmission (125) and others (150). In one embodiment, the communications means (215) is a wireless transmitter/receiver. In another embodiment, a hand held instrument (358) can be used on-site and communicates with the sensor (350) to receive sample (352) related data and transmit it to a remote processing system (370) for further analysis. In yet another embodiment, a hand held instrument (403) has a plurality of cardiac marker binding ligands (400) deposited on the sensor/sample interface providing a medical diagnosis and point-of-care device (403).
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: February 20, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr, Patrick Paul Smith, Dwight U. Bartholomew, John H. Berlien, Jr., Frederick F. Geyer, Paul S. Breedlove
  • Patent number: 6183696
    Abstract: A miniaturized sensor (100) that improves the confidence measure of a given sample reading by directing the flow of sample to the sensor/sample interface (117) and thus bringing the sample reliably in contact with the sensor's biosensing film. An inlet flow channel (105) extending from the bottom (125) of the sensor (100) to the sensing surface (120). The inlet channel (105) guides the sample to a cavity 115 formed at a housing surface (120) where it interacts with the film deposit (117). An outlet channel (110) extends from the cavity (115) to the bottom surface (125) and directs the sample outside the device. The light source (58), detector array (68) and interface (54) can be added to the structure providing a fully integrated miniaturized sensor. Various well known methods of manufacturing may be used including mill casting, split molding and double mold processes.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: February 6, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Jerry Elkind, Richard A. Carr, Jose Melendez
  • Patent number: 6111248
    Abstract: A self-contained optical sensor (5) with a device platform (7) and an encapsulating light transmissive housing (9) formed therein is disclosed in conjunction with several sensor configurations including fluorescence-based, surface plasmon resonance based and light transmissive (bio) chemical sensor applications. The sensor (10) has at least one light source (20), a photodetector (25), a power source (18) and a display (50) which are embedded in an encapsulating housing (14). In other embodiments, a signal processing unit (35), converter circuit (30) and wireless Communications means (40, 45) are also included in the housing (14).
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 29, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr
  • Patent number: 6097479
    Abstract: Disclosed is an integrated miniaturized biochemical sensor (50) which can be used to make critical angle measurements resulting from the differences in refractive index between the sensor's housing (55) and a given sample (40). In one embodiment, the sensor includes a device platform (111) over which an encapsulating and light transmissive housing (115) is formed to enclose the various sensor components including a light source (105), and a photodetector (107), a signal processing unit (95) and a temperature sensor (95). In another embodiment the housing (115) has a reflective mirrored surface (119) which focuses the light (117) from the light source (105) onto a sensing surface (121) which is in interact with the sample (40) of interest. Light incident from the sensing surface (121) is directed at the photodetector (107,159) which may be an array or single cell. A temperature sensor (95) may also be included and coupled to the platform (111).
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 1, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr, Dwight U. Bartholomew
  • Patent number: 6091948
    Abstract: A call forwarding automation feature in a wireless telephone provides automated activation and deactivation of conventional carrier system call forwarding. The wireless telephone provides for storing multiple call forwarding telephone numbers, selecting a call forwarding telephone number based upon location information, automatically activating call forwarding to the selected telephone number during a wireless telephone power down sequence, and automatically deactivating the call forwarding during a wireless telephone power up sequence. Programming is also provided for configuring and enabling the call forwarding feature. In another embodiment, the wireless telephone automatically prompts the user for activation of call forwarding each time the user powers down the wireless telephone. The process also provides the user an ability to select from a list of stored call forwarding telephone numbers to use, as well as providing the user an ability to manually input a new telephone number.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: July 18, 2000
    Assignee: Oki Telecom, Inc.
    Inventors: Jerry Richard Carr, Robert C. Witter, Clifton J. Barber, Michael A. Wise, Anthony B. Waldroup
  • Patent number: 6045756
    Abstract: A miniaturized integrated sensor (50) useful for indicating the presence of a sample analyte is disclosed. The sensor (50) has a platform (52) with an upper surface (53) and a detector (62), light source (60), waveguide (58), and reflective fixtures (60,62) embedded in the platform (52). The light source (60) is preferably a light emitting diode and sits in a cup-shaped dimple (68) that directs light from the light source (60) toward one of the reflective fixtures (64) to uniformly distribute light across the waveguide (58). The waveguide (58) is coupled to an upper surface (53) of the sensor platform (52) and is coated with a thin film of indicator chemistry (70) which interacts with the sample analyte to produce optic signal changes that are measurable by the detector (62). A lead frame (51) in the platform (52) has pins (54, 55, 56) which provide the interface to the outside world.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: April 4, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Carr, Jose L. Melendez, Kirk S. Laney
  • Patent number: 6024923
    Abstract: An integrated biochemical sensor (200) for detecting the presence of one or more specific samples (240) having a device platform (355) with a light absorbing upper surface and input/output pins (375) is disclosed. An encapsulating housing (357) provides an optical transmissive enclosure which covers the platform (355) and has a layer of fluorescence chemistry on its outer surface (360). The fluorophore is chosen for its molecular properties in the presence of the sample analyte (240). The detector (370), light sources (365, 367, 407, 409) are all coupled to the platform (355) and encapsulated within the housing (357). A filter (375) element is used to block out unwanted light and increase the detector's (370) ability to resolve wanted emission light.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: February 15, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Jose Melendez, Richard A. Carr, Diane Arbuthnot
  • Patent number: 5946083
    Abstract: A fixed optic sensor system (200) comprising a sensor system (210), and electronic sub-system (205) and a communications means (215). The system can be used for detecting the presence of various sample (236) properties and in that regard has widespread application by leveraging off various miniaturized sensor configurations including surface plasmon resonance (50), fluorescence (80), light transmission (125) and others (150). In one embodiment, the communications means (215) is a wireless transmitter/receiver. In another embodiment, a hand held instrument (358) can be used on-site and communicates with the sensor (350) to receive sample (352) related data and transmit it to a remote processing system (370) for further analysis. In yet another embodiment, a hand held instrument (403) has a plurality of cardiac marker binding ligands (400) deposited on the sensor/sample interface providing a medical diagnosis and point-of-care device (403).
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 31, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr, Patrick Paul Smith, Dwight U. Bartholomew, John H. Berlien, Jr., Frederick F. Geyer, Paul S. Breedlove
  • Patent number: 5922285
    Abstract: An integrated biochemical sensor (200) for detecting the presence of one or more specific samples (240) having a device platform (355) with a light absorbing upper surface and input/output pins (375) is disclosed. An encapsulating housing (357) provides an optical transmissive enclosure which covers the platform (355) and has a layer of fluorescence chemistry on its outer surface (360). The fluorophore is chosen for its molecular properties in the presence of the sample analyte (240). The detector (370), light sources (365, 367, 407, 409) are all coupled to the platform (355) and encapsulated within the housing (357). A filter (375) element is used to block out unwanted light and increase the detector's (370) ability to resolve wanted emission light.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: July 13, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Jose Melendez, Richard A. Carr, Diane L. Arbuthnot
  • Patent number: 5912456
    Abstract: A surface plasmon resonance sensor includes a light source 10 and a polarizer 18 for producing polarized light which passes through a transparent body 12 and strikes a thin conductive film 26 disposed on the exterior surface of the body 12. The film 26 exhibits surface plasmon resonance when the light strikes the film at a "resonance angle". By determining the angle at which surface plasmon resonance occurs, the refractive index of the material on the side of the film 26 opposite to the side which reflects the polarized light can be measured.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: June 15, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Jose L. Melendez, Richard A. Carr, Robert C. Keller
  • Patent number: 5898503
    Abstract: A surface plasmon resonance (SPR) sensor includes a transparent base housing 12 and a detachable optical housing 19. Radiation from a radiation source 10, disposed within base housing 12, is polarized by polarizing filter 16 and passes through the interface between base housing 12 and optical housing 19. The polarized radiation 18 is reflected from a mirror 20 onto a SPR layer 22, which is formed on an exterior surface of optical housing 19. Layer 22 comprises a thin layer of a conductive material. Radiation 24 reflected from SPR layer 22 re-enters housing 19 and strikes an array 28 of photodetectors. From the intensity of radiation at each photodetector, one can determine the index of refraction of the substance on the opposite side of SPR layer 22.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: April 27, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Robert C. Keller, Jose L. Melendez, Richard A. Carr
  • Patent number: 5691465
    Abstract: A gas detector, preferably for carbon monoxide detection, which includes a light detector(5), a light source (1) for providing a light beam which travels along a light path to the detector and detection chemistry (3) disposed in the light path for altering the light beam responsive to the impingement of a predetermined gas thereon. The detection chemistry includes a plurality of spaced apart members, each disposed in the light path. Each member includes a chemistry responsive to the impingement of the predetermined gas thereon for reversibly altering the light transmissive properties of the detection chemistry. The chemistry of any one of the members can differ from the chemistry of one or more of the other members if more than two members are present. The detection chemistry can, in part, act as a filter to light from the light beam. The detection chemistry is disposed in a gas ambient, the gas ambient being disposed between the spaced apart members.
    Type: Grant
    Filed: August 7, 1996
    Date of Patent: November 25, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Carr, Kirk S. Laney