Patents by Inventor Richard C. Chu

Richard C. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8020298
    Abstract: A method of fabricating a heat exchanger which includes: obtaining multiple coolant-carrying conduit sections, each having a non-circular cross-section, and first and second main surfaces; providing multiple primary folded fins secured to the conduit sections. Each folded fin includes a solid fin surface with multiple bends defining alternating, U-shaped air-passage channels, and a base surface and a top surface. Each folded fin is secured at the base or top surface to a main surface of a conduit section, and the folded fins have leading and trailing edges relative to airflow direction. The method includes forming a plurality of sets of secondary fins, each set extending from the leading or trailing edge of a respective folded fin at an angle other than 0. At least one conduit section has a first folded fin secured to its first main surface, and a second folded fin secured to its second main surface thereof.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 8018720
    Abstract: Vapor condensers and cooling apparatuses are provided which facilitate vapor condensation cooling of a coolant employed in cooling an electronic device. The vapor condenser includes a thermally conductive base structure with a plurality of condenser fins extending from the base structure. The condenser fins have a proximal end coupled to the base structure and a remote end remote from the base structure. At least one exposed cavity is provided within each condenser fin extending from the remote end towards the proximal end. The exposed cavities are sized to provide greater condenser fin surface area for facilitating vapor condensate formation, and thereby facilitate cooling of an electronic device using a two-phase coolant.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8014150
    Abstract: Cooled electronic modules and methods of fabrication are provided with pump-enhanced, dielectric fluid immersion-cooling of the electronic device. The cooled electronic module includes a substrate supporting an electronic device to be cooled. A cooling apparatus couples to the substrate, and includes a housing configured to at least partially surround and form a sealed compartment about the electronic device. Additionally, the cooling apparatus includes dielectric fluid and one or more pumps disposed within the sealed compartment. The dielectric fluid is in direct contact with the electronic device, and the pump is an impingement-cooling, immersed pump disposed to actively pump dielectric fluid within the sealed compartment towards the electronic device. Multiple condenser fins extend from the housing into the sealed compartment in an upper portion of the sealed compartment, and a liquid-cooled cold plate or an air-cooled heat sink is coupled to the top of the housing for cooling the condenser fins.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Publication number: 20110197612
    Abstract: A hybrid air and liquid coolant conditioning unit is provided for facilitating cooling of electronics rack(s) of a data center. The unit includes a first heat exchange assembly, including a liquid-to-liquid heat exchanger, a system coolant loop and a facility coolant loop, and a second heat exchange assembly, including an air-to-liquid heat exchanger, an air-moving device, and the facility coolant loop. The system coolant loop provides cooled system coolant to the electronics rack(s), and expels heat in the liquid-to-liquid heat exchanger from the electronics rack(s) to the facility coolant. The air-to-liquid heat exchanger extracts heat from the air of the data center and expels the heat to the facility coolant of the facility coolant loop. The facility coolant loop provides chilled facility coolant in parallel to the liquid-to-liquid heat exchanger and the air-to-liquid heat exchanger. In one implementation, the hybrid coolant conditioning unit includes a vapor-compression heat exchange assembly.
    Type: Application
    Filed: April 26, 2011
    Publication date: August 18, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110192027
    Abstract: A composite interface and methods of fabrication are provided for coupling a cooling assembly to an electronic device. The interface includes a plurality of thermally conductive wires formed of a first material having a first thermal conductivity, and a thermal interface material at least partially surrounding the wires. The interface material, which thermally interfaces the cooling assembly to a surface to be cooled of the electronic device, is a second material having a second thermal conductivity, wherein the first thermal conductivity is greater than the second thermal conductivity. At least some wires reside partially over a first region of higher heat flux and extend partially over a second region of lower heat flux, wherein the first and second regions are different regions of the surface to he cooled. These wires function as thermal spreaders facilitating heat transfer from the surface to be cooled to the cooling assembly.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 11, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Keith E. FOGEL, Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 7990709
    Abstract: Apparatus and method are provided for facilitating cooling of air passing through an electronics rack. The apparatus includes a heat exchange assembly hingedly mounted above and external to the rack, such that air passing above the rack from an air outlet side to an air inlet side thereof passes through the heat exchange assembly, and is cooled. The heat exchange assembly includes a support structure to support hinged mounting of the assembly above the rack, and an air-to-liquid heat exchanger coupled to the support structure. The heat exchanger has an inlet plenum and an outlet plenum in fluid communication with respective connect couplings which facilitate connection of the plenums to coolant supply and return lines, respectively. The heat exchanger also includes heat exchange tube sections, each of which has a coolant channel with an inlet and an outlet coupled to the inlet and outlet plenums, respectively.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 7983040
    Abstract: Apparatus and method are provided for facilitating pumped, immersion-cooling of an electronic subsystem having multiple different types of components to be immersion-cooled. The apparatus includes a container sized to receive the electronic subsystem, and a coolant inlet port and a coolant outlet port for facilitating ingress and egress of coolant through the container. The apparatus further includes a coolant pump assembly coupled in fluid communication with the coolant inlet and outlet ports of the container for facilitating active pumping of coolant through the container. When the electronic subsystem is operatively inserted into the container and coolant is pumped through the container, the multiple different types of components of the electronic subsystem are immersion-cooled by the coolant.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 7978473
    Abstract: A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat-generating electronic device. The method of fabrication includes: obtaining a solder material; disposing the solder material on a surface to be cooled; and reflowing and shaping the solder material disposed on the surface to be cooled to configure the solder material as a base with a plurality of fins extending therefrom. In addition to being in situ-configured on the surface to be cooled, the base is simultaneously metallurgically bonded to the surface to be cooled. The solder material, configured as the base with a plurality of fins extending therefrom, is a single, monolithic structure thermally attached to the surface to be cooled via the metallurgical bonding thereof to the surface to be cooled.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Bruce K. Furman, Madhusudan K. Iyengar, Paul A. Lauro, Roger R. Schmidt, Da-Yuan Shih, Robert E. Simons
  • Patent number: 7979250
    Abstract: A method is provided for facilitating installation of one or more electronics racks within a data center. The method includes: placing a plurality of thermal simulators in the data center in a data center layout to establish a thermally simulated data center, each thermal simulator simulating at least one of airflow intake or heated airflow exhaust of a respective electronics rack of a plurality of electronics racks to be installed in the data center; monitoring temperature within the thermally simulated data center at multiple locations, and verifying the data center layout if measured temperatures are within respective acceptable temperature ranges for the data center when containing the plurality of electronics racks; and establishing the plurality of electronics racks within the data center using the verified data center layout, the establishing including at least one of reconfiguring or replacing each thermal simulator with a respective electronics rack.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Matthew R. Archibald, Richard C. Chu, Hendrik F. Hamann, Madhusudan K. Iyengar, Roger R. Schmidt
  • Patent number: 7978472
    Abstract: Liquid-cooled electronics racks and methods of fabrication are provided wherein a liquid-based cooling apparatus facilitates cooling of electronic subsystems when docked within the electronics rack. The cooling apparatus includes a liquid-cooled cooling structure mounted to a front of the rack, and a plurality of heat transfer elements. The cooling structure is a thermally conductive material which has a coolant-carrying channel for facilitating coolant flow through the structure. Each heat transfer element couples to one or more heat-generating components of a respective electronic subsystem, physically contacts the cooling structure when that electronic subsystem is docked within the rack, and provides a thermal transport path from the heat-generating components of the electronic subsystem to the liquid-cooled cooling structure. Advantageously, electronic subsystems may be docked within or undocked from the electronics rack without affecting flow of coolant through the liquid-cooled cooling structure.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 7967062
    Abstract: A composite interface and methods of fabrication are provided for coupling a cooling assembly to an electronic device. The interface includes a plurality of thermally conductive wires formed of a first material having a first thermal conductivity, and a thermal interface material at least partially surrounding the wires. The interface material, which thermally interfaces the cooling assembly to a surface to be cooled of the electronic device, is a second material having a second thermal conductivity, wherein the first thermal conductivity is greater than the second thermal conductivity. At least some wires reside partially over a first region of higher heat flux and extend partially over a second region of lower heat flux, wherein the first and second regions are different regions of the surface to be cooled. These wires function as thermal spreaders facilitating heat transfer from the surface to be cooled to the cooling assembly.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Keith E. Fogel, Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 7965509
    Abstract: A method and associated assembly for cooling electronic heat generating components of a computer including dual-in-line memory (DIMM) array(s) is provided. The assembly comprises a cooling component having a plate with a first and a second (reverse) side, thermally coupling to the heat generating components including the DIMM array(s). The first plate side has a coolant conduit connected at one end to a supply manifold via flexible tubing and at another end to a return manifold via another flexible tubing such that when coolant is supplied, the coolant circulates from the supply manifold to the return manifold by passing through said first plate's conduit.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Maurice F. Holahan, Madhusudan K. Iyengar, Robert E. Simons, Rebecca N. Wagner
  • Patent number: 7963119
    Abstract: A hybrid air and liquid coolant conditioning unit is provided for facilitating cooling of electronics rack(s) of a data center. The unit includes a first heat exchange assembly, including a liquid-to-liquid heat exchanger, a system coolant loop and a facility coolant loop, and a second heat exchange assembly, including an air-to-liquid heat exchanger, an air-moving device, and the facility coolant loop. The system coolant loop provides cooled system coolant to the electronics rack(s), and expels heat in the liquid-to-liquid heat exchanger from the electronics rack(s) to the facility coolant. The air-to-liquid heat exchanger extracts heat from the air of the data center and expels the heat to the facility coolant of the facility coolant loop. The facility coolant loop provides chilled facility coolant in parallel to the liquid-to-liquid heat exchanger and the air-to-liquid heat exchanger. In one implementation, the hybrid coolant conditioning unit includes a vapor-compression heat exchange assembly.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 7961475
    Abstract: Apparatus and method are provided for facilitating immersion-cooling of an electronic subsystem having multiple different types of components to be immersion-cooled. The apparatus includes a container sized to receive the electronic subsystem, and a hermetically sealed electrical connector disposed on a wall of the container. The electrical connector is sized and configured to receive an electrical and network connector of the electronic subsystem when the electronic subsystem is operatively inserted into the container, and to facilitate external electrical and network coupling to the subsystem. The apparatus further includes coolant inlet and outlet ports coupled to the container for facilitating ingress and egress of coolant through the container. When the electronic subsystem is operatively inserted into the container and coolant flows through the container, the electronic subsystem is immersion-cooled by the coolant.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Vinod Kamath, Robert E. Simons
  • Patent number: 7948757
    Abstract: A method of fabricating a multi-fluid cooling system is provided for removing heat from one or more electronic devices. The cooling system includes a multi-fluid manifold structure with at least one first fluid inlet orifice and at least one second fluid inlet orifice for concurrently, separately injecting a first fluid and a second fluid onto a surface to be cooled when the cooling system is employed to cool one or more electronic devices, wherein the first fluid and the second fluid are immiscible, and the first fluid has a lower boiling point temperature than the second fluid. When the cooling system is employed to cool one or more electronic devices and the first fluid boils, evolving first fluid vapor condenses in situ by direct contact with the second fluid of higher boiling point temperature.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 7944694
    Abstract: Apparatus and method are provided for facilitating liquid cooling of a plurality of blades of an electronic system chassis. The apparatus includes a chassis-level manifold assembly with a first coolant path and a plurality of second coolant paths. The first coolant path is isolated from the plurality of second coolant paths by a heat exchanger. The heat exchanger facilitates transfer of heat from coolant within the second coolant paths to coolant within the first coolant path. Each second coolant path is isolated from the other second coolant paths, and coolant passing therethrough facilitates cooling of a respective blade. When operational, each second coolant path forms a portion of a respective closed loop coolant path extending between the manifold assembly and the electronic system chassis, and in one embodiment, each blade is an immersion-blade, with multiple components thereof immersion-cooled by coolant flowing through the respective second coolant path.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Publication number: 20110103019
    Abstract: A method and associated assembly are provided for cooling of a computing embodiment having electronic components. The heat generating components are disposed in the vicinity of at least one cold plate providing direct liquid cooling. Coolant is provided to the cold plate which will eventually exit it through one or more ports or orifices placed on the sides or both side and bottom of the cold plate. The placement, size and number of port(s) or orifice(s) can be selectively adjusted to control amount of coolant flow. Effluent flow from the cold plate flows over the remaining immersion cooled components and then exits the liquid tight enclosure which houses the electronic components.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Patent number: 7918025
    Abstract: A thermal spreading device disposable between electronic circuitry and a heat sink includes a substrate having parallel first and second faces and conduits extending through the substrate between the faces. The substrate material has a first thermal conductivity value in a direction parallel to the faces and a second thermal conductivity value in a direction normal to the faces, with the second thermal conductivity value being less than the first thermal conductivity value. The conduit material has a thermal conductivity value associated with it, with the thermal conductivity value being greater than the second thermal conductivity value of the substrate. One method of fabricating the thermal spreading device includes disposing a molding material radially about the rods and hardening the material. Other methods include press fitting and shrink fitting the rods into a substrate material.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventors: Richard C. Chu, Michael J. Ellsworth, Jr., Robert E. Simons
  • Publication number: 20110075373
    Abstract: System and method are provided for cooling an electronics rack. A modular cooling unit (MCU) is associated with the rack to provide system coolant to an electronics subsystem and a bulk power assembly. The MCU includes a liquid-to-liquid heat exchanger, and defines portions of facility and system coolant loops. Chilled coolant from a facility source is passed through the liquid-to-liquid heat exchanger to cool system coolant flowing through the system coolant loop. The system also includes an air-to-liquid heat exchanger in fluid communication with the system coolant loop, a pump in fluid communication with the system coolant loop, and a controller. The controller controls operation of the pump to adjust flow of system coolant through the system coolant loop dependent upon a mode of operation. In a standby mode, system coolant flows through the air-to-liquid heat exchanger at a lower flow rate, and expels heat to ambient air.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110075367
    Abstract: Compliant conduction rail assembly and method are provided for facilitating cooling of an electronics structure. The rail assembly includes a first thermally conductive rail mounted to a surface of the electronics structure, a second thermally conductive rail thermally conductively interfaced to the first rail, and a biasing mechanism biasing the second rail away from the first rail. The first and second rails and the biasing mechanism are configured for slidable insertion into a housing with the electronics structure, the housing containing a liquid-cooled cold plate(s). With insertion of the electronics structure into the housing, the second rail engages the liquid-cooled cold plate and is forced by the biasing mechanism into thermal contact with the cold plate, and is forced by the cold plate towards the first rail, which results in a compliant thermal interface between the electronics structure and the liquid-cooled cold plate of the housing.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS