Patents by Inventor Richard C. Chu
Richard C. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Control of system coolant to facilitate two-phase heat transfer in a multi-evaporator cooling system
Patent number: 8322154Abstract: A cooling system and method are provided for facilitating two-phase heat transfer from an electronics system including a plurality of electronic devices to be cooled. The cooling system includes a plurality of evaporators coupled to the electronic devices, and a coolant loop for passing system coolant through the evaporators. The coolant loop includes a plurality of coolant branches coupled in parallel, with each coolant branch being coupled in fluid communication with a respective evaporator. The cooling system further includes a control unit for maintaining pressure of system coolant at a system coolant supply side of the coolant branches within a specific pressure range at or above saturation pressure of the system coolant for a given desired saturation temperature of system coolant into the evaporators to facilitate two-phase heat transfer in the plurality of evaporators from the electronic devices to the system coolant at the given desired saturation temperature.Type: GrantFiled: September 9, 2009Date of Patent: December 4, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons -
Patent number: 8322029Abstract: A composite interface and methods of fabrication are provided for coupling a cooling assembly to an electronic device. The interface includes a plurality of thermally conductive wires formed of a first material having a first thermal conductivity, and a thermal interface material at least partially surrounding the wires. The interface material, which thermally interfaces the cooling assembly to a surface to be cooled of the electronic device, is a second material having a second thermal conductivity, wherein the first thermal conductivity is greater than the second thermal conductivity. At least some wires reside partially over a first region of higher heat flux and extend partially over a second region of lower heat flux, wherein the first and second regions are different regions of the surface to he cooled. These wires function as thermal spreaders facilitating heat transfer from the surface to be cooled to the cooling assembly.Type: GrantFiled: April 15, 2011Date of Patent: December 4, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Keith F. Fogel, Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
-
Patent number: 8274790Abstract: An apparatus is provided for cooling an electronics rack, which includes an electronic subsystem across which air passing through the rack flows. A cooling unit provides, via system coolant supply and return manifolds, system coolant in parallel to the electronic subsystem and an air-to-liquid heat exchanger disposed to cool, in normal-mode, air passing through the rack. A controller monitors coolant associated with the cooling unit and automatically transitions the cooling apparatus from normal-mode to failure-mode responsive to detecting a failure of the coolant. In transitioning to failure-mode, multiple isolation valves are employed in switching to a serial flow of system coolant from the electronic subsystem to the heat exchanger for rejecting, via the system coolant, heat from the electronic subsystem to air passing across the heat exchanger.Type: GrantFiled: November 16, 2010Date of Patent: September 25, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Randall G. Kemink, Robert E. Simons
-
Patent number: 8266802Abstract: A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat-generating electronic device. The method of fabrication includes: bonding a plurality of thermally conductive pin fins to a surface to be cooled, each pin fin including a stem with a bulb structure on its distal end; depositing material onto the plurality of thermally conductive pin fins to integrally form a jet impingement structure with the pin fins, wherein the distal ends of the plurality of thermally conductive pin fins form part of the jet impingement structure; and controlling the depositing of material onto the distal ends of the pin fins to form a plurality of jet orifices in the jet impingement structure, with the depositing resulting in the plurality of jet orifices automatically self-aligning between the plurality of thermally conductive pin fins.Type: GrantFiled: June 18, 2008Date of Patent: September 18, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
-
Publication number: 20120210731Abstract: A method is provided for facilitating cooling of an electronic component. The method includes: providing a refrigerant loop configured for refrigerant to flow through the loop; coupling a compressor in fluid communication with the loop, wherein a first portion of the loop resides upstream of a refrigerant inlet of the compressor, and a second portion resides downstream; and disposing a controllable thermoelectric array in thermal communication with the refrigerant loop. The thermoelectric array is disposed with the first portion of the refrigerant loop at least partially in thermal contact with the first side of the array, and the second portion of the loop at least partially in thermal contact with a second side of the array. The array is controlled to ensure that refrigerant in the refrigerant loop entering the compressor is in a superheated thermodynamic state.Type: ApplicationFiled: April 20, 2012Publication date: August 23, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
-
Patent number: 8248801Abstract: Thermoelectric-enhanced, liquid-cooling apparatus and method are provided for facilitating cooling of one or more components of an electronics rack. The apparatus includes a liquid-cooled structure in thermal communication with the component(s) to be cooled, and a liquid-to-air heat exchanger coupled in fluid communication with the liquid-cooled structure via a coolant loop for receiving coolant from and supply coolant to the liquid-cooled structure. A thermoelectric array is disposed with first and second coolant loop portions in thermal contact with first and second sides of the array. The thermoelectric array operates to transfer heat from coolant passing through the first loop portion to coolant passing through the second loop portion, and cools coolant passing through the first loop portion before the coolant passes through the liquid-cooled structure. Coolant passing through the first and second loop portions passes through the liquid-to-air heat exchanger for cooling thereof.Type: GrantFiled: July 28, 2010Date of Patent: August 21, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
-
Publication number: 20120199311Abstract: An apparatus for facilitating servicing of a liquid-cooled electronics rack is provided. The apparatus includes a coolant tank, a coolant pump in fluid communication with the coolant tank, multiple parallel-connected coolant supply lines coupling the coolant pump to a coolant supply port of the apparatus, and a coolant return port and a coolant return line coupled between the coolant return port and the coolant tank. Each coolant supply line includes a coolant control valve for selectively controlling flow of coolant therethrough pumped by the coolant pump from the coolant tank. At least one coolant supply line includes at least one filter, and one coolant supply line is a bypass line with no filter. When operational, the apparatus facilitates filling of coolant into a cooling system of a liquid-cooled electronics rack by allowing for selective filtering of coolant inserted into the cooling system.Type: ApplicationFiled: April 16, 2012Publication date: August 9, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS, Prabjit SINGH
-
Patent number: 8230906Abstract: A dual-chamber fluid pump is provided for a multi-fluid electronics cooling system and method. The pump has a first fluid path for pumping a first fluid coolant and a second fluid path for pumping a second fluid coolant, with the first fluid path including a first pumping chamber and the second fluid path including a second pumping chamber. The first and second pumping chambers are separated by at least one diaphragm, and an actuator is coupled to the diaphragm for transitioning the diaphragm between a first position and a second position. Transitioning of the diaphragm to the first position pumps first fluid coolant from the first pumping chamber while concurrently drawing second fluid coolant into the second pumping chamber, and transitioning of the diaphragm to the second position pumps second fluid coolant from the second pumping chamber while concurrently drawing first fluid coolant into the first pumping chamber.Type: GrantFiled: August 4, 2010Date of Patent: July 31, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
-
Patent number: 8208258Abstract: A cooling system and method are provided for facilitating cooling of multiple liquid-cooled electronics racks. The cooling system includes a main system coolant supply loop with a plurality of system coolant supply branch lines for facilitating supply of cooled system coolant to the electronics racks, and a main system coolant return loop with a plurality of system coolant return branch lines for facilitating return of exhausted system coolant from the electronics racks. When operational, cooled system coolant circulates through the coolant supply loop and exhausted system coolant circulates through the coolant return loop. A plurality of modular cooling units are coupled to the coolant supply loop and coolant return loop. Each modular cooling unit includes a heat exchanger to facilitate cooling of a portion of the exhausted coolant circulating through the main system coolant return loop for return as cooled system coolant to the main system coolant supply loop.Type: GrantFiled: September 9, 2009Date of Patent: June 26, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
-
Patent number: 8203842Abstract: A method and associated assembly are provided for cooling of a computing embodiment having electronic components. The heat generating components are disposed in the vicinity of at least one cold plate providing direct liquid cooling. Coolant is provided to the cold plate which will eventually exit it through one or more ports or orifices placed on the sides or both side and bottom of the cold plate. The placement, size and number of port(s) or orifice(s) can be selectively adjusted to control amount of coolant flow. Effluent flow from the cold plate flows over the remaining immersion cooled components and then exits the liquid tight enclosure which houses the electronic components.Type: GrantFiled: January 6, 2011Date of Patent: June 19, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
-
Patent number: 8194406Abstract: Apparatus and method are provided for two-phase dielectric cooling of an electronic device. The apparatus includes a coolant flow path, a vapor condenser and one or more vapor fans. The coolant flow path is in fluid communication with the electronic device, where liquid dielectric coolant within the flow path vaporizes upon contacting the electronic device, forming dielectric coolant vapor, and thereby facilitating cooling of the electronic device. The vapor condenser is also in fluid communication with the coolant flow path and facilitates condensate formation from the dielectric coolant vapor. The one or more vapor fans are disposed within the flow path to actively move dielectric coolant vapor into contact with the vapor condenser, and thereby enhance cooling of the electronic device by facilitating coolant condensate formation and thus recirculation of the coolant condensate as liquid dielectric coolant.Type: GrantFiled: September 23, 2009Date of Patent: June 5, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
-
Patent number: 8189334Abstract: Dehumidifying and re-humidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes an air-to-liquid heat exchanger disposed at an air inlet side of the rack, wherein air flows through the rack from the air inlet side to an air outlet side. The heat exchanger, which is positioned for ingressing air to pass thereacross before passing through the electronics rack, is in fluid communication with a coolant loop for passing coolant through the heat exchanger, and the heat exchanger dehumidifies ingressing air to the electronics rack to reduce a dew point of air flowing through the rack. A condensate collector disposed at the air inlet side collects liquid condensate from the heat exchanger's dehumidifying of ingressing air, and an evaporator disposed at the air outlet side humidifies air egressing from the electronics rack employing condensate from the condensate collector.Type: GrantFiled: May 26, 2010Date of Patent: May 29, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
-
Patent number: 8184436Abstract: Liquid-cooled electronics racks are provided which include: immersion-cooled electronic subsystems; a vapor-condensing heat exchanger to condense dielectric fluid vapor egressing from the immersion-cooled electronic subsystems; a dielectric fluid vapor return coupling in fluid communication the vapor outlets of the immersion-cooled electronic subsystems and the vapor-condensing heat exchanger; a reservoir for holding dielectric fluid; a gravity drain line coupled to drain dielectric fluid condensate from the vapor-condensing heat exchanger to the reservoir; an immersed, sub-cooling heat exchanger disposed within the reservoir; a dielectric fluid supply manifold coupling in fluid communication the reservoir and the dielectric fluid inlets of the immersion-cooled electronic subsystems; and a pump for supplying under pressure dielectric fluid from the reservoir to the dielectric fluid supply manifold for maintaining dielectric fluid in a liquid state within the immersion-cooled electronic subsystems.Type: GrantFiled: June 29, 2010Date of Patent: May 22, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
-
Publication number: 20120120603Abstract: An apparatus is provided for cooling an electronics rack, which includes an electronic subsystem across which air passing through the rack flows. A cooling unit provides, via system coolant supply and return manifolds, system coolant in parallel to the electronic subsystem and an air-to-liquid heat exchanger disposed to cool, in normal-mode, air passing through the rack. A controller monitors coolant associated with the cooling unit and automatically transitions the cooling apparatus from normal-mode to failure-mode responsive to detecting a failure of the coolant. In transitioning to failure-mode, multiple isolation valves are employed in switching to a serial flow of system coolant from the electronic subsystem to the heat exchanger for rejecting, via the system coolant, heat from the electronic subsystem to air passing across the heat exchanger.Type: ApplicationFiled: November 16, 2010Publication date: May 17, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Randall G. KEMINK, Robert E. SIMONS
-
Patent number: 8179677Abstract: Cooling apparatus and method are provided for immersion-cooling of an electronic subsystem of an electronics rack. The cooling apparatus includes a housing at least partially surrounding and forming a sealed compartment about the electronic subsystem and a dielectric fluid disposed within the sealed compartment, with the electronic subsystem being immersed within the dielectric fluid. A liquid-cooled vapor condenser is provided which includes a plurality of thermally conductive condenser fins extending within the sealed compartment in an upper portion of the compartment. The condenser fins facilitate cooling of dielectric fluid vapor rising to the upper portion of the compartment. A filler material is disposed within the sealed compartment to reduce the amount of dielectric fluid required within the compartment to achieve immersion-cooling of the electronic subsystem, and the filler material includes a shaped surface to direct dielectric fluid vapor within the compartment towards the condenser fins.Type: GrantFiled: June 29, 2010Date of Patent: May 15, 2012Assignee: International Business Machines CorporationInventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
-
Publication number: 20120111036Abstract: Apparatus and method are provided for cooling an electronic component(s). The apparatus includes a coolant-cooled structure in thermal communication with the component(s) to be cooled, and a coolant-to-refrigerant heat exchanger in fluid communication with the coolant-cooled structure via a coolant loop. A thermal buffer unit is coupled in fluid communication with the coolant loop, and a refrigerant loop is coupled in fluid communication with the heat exchanger. The heat exchanger dissipates heat from coolant in the coolant loop to refrigerant in the refrigerant loop. A compressor is coupled in fluid communication with the refrigerant loop and is maintained ON responsive to heat load of the component(s) exceeding a heat load threshold, and is cycled ON and OFF responsive to heat load of the component(s) being below the threshold. The thermal storage unit dampens swings in coolant temperature within the coolant loop during cycling ON and OFF of the compressor.Type: ApplicationFiled: November 4, 2010Publication date: May 10, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
-
Publication number: 20120111038Abstract: Apparatus and method are provided for cooling an electronic component. The apparatus includes a refrigerant evaporator in thermal communication with a component(s) to be cooled, and a refrigerant loop coupled in fluid communication with the evaporator for facilitating flow of refrigerant through the evaporator. The apparatus further includes a compressor in fluid communication with a refrigerant loop, an air-cooled heat sink coupled to the refrigerant evaporator, for providing backup cooling to the electronic component in a backup, air cooling mode, and a controllable refrigerant heater coupled to the heat sink. The refrigerant heater is in thermal communication across the heat sink with refrigerant passing through the refrigerant evaporator, and is controlled in a primary, refrigeration cooling mode to apply an auxiliary heat load to refrigerant passing through the refrigerant evaporator to ensure that refrigerant in the refrigerant loop entering the compressor is in a superheated thermodynamic state.Type: ApplicationFiled: November 4, 2010Publication date: May 10, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
-
Publication number: 20120111027Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a refrigerant loop, a compressor coupled to the refrigerant loop, and a controllable thermoelectric array disposed in thermal communication with the refrigerant loop. Refrigerant flowing through the refrigerant loop facilitates dissipation of heat from the electronic component, and the thermoelectric array is disposed with a first portion of the refrigerant loop, residing upstream of the compressor, in thermal contact with a first side of the array, and a second portion of the refrigerant loop, residing downstream of the compressor, in thermal contact with a second side of the array. The thermoelectric array ensures that refrigerant in the refrigerant loop entering the compressor is in a superheated thermodynamic state by transferring heat from refrigerant passing through the second portion to refrigerant passing through the first portion of the refrigerant loop.Type: ApplicationFiled: November 4, 2010Publication date: May 10, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
-
Publication number: 20120111037Abstract: Apparatus and method are provided for cooling an electronic component. The apparatus includes a refrigerant evaporator in thermal communication with the component(s) to be cooled, and a refrigerant loop coupled in fluid communication with the evaporator for facilitating flow of refrigerant through the evaporator. The apparatus further includes a compressor in fluid communication with the refrigerant loop, a refrigerant bypass pipe coupled to the refrigerant loop in parallel fluid communication with the evaporator, and a control valve for controlling refrigerant flow through the evaporator. The control valve is controlled to maintain temperature of the component(s) within a specified temperature range. The apparatus further includes a controllable refrigerant heater associated with the refrigerant bypass pipe for providing an adjustable heat load on refrigerant in the bypass pipe to ensure that refrigerant entering the compressor is in a superheated thermodynamic state.Type: ApplicationFiled: November 4, 2010Publication date: May 10, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
-
Publication number: 20120111028Abstract: Apparatus and method are provided for facilitating cooling of an electronic component of varying heat load. The apparatus includes a refrigerant evaporator coupled in thermal communication with the electronic component, a refrigerant loop coupled in fluid communication with the refrigerant evaporator for facilitating flow of refrigerant through the evaporator, and a thermoelectric array disposed in thermal communication with the evaporator. The thermoelectric array includes one or more thermoelectric elements, and is powered by a voltage and by a current of switchable polarity, which are controlled to maintain heat load on refrigerant flowing through the refrigerant evaporator within a steady state range, notwithstanding varying of the heat load applied to the refrigerant flowing through the refrigerant by the at least one electronic component.Type: ApplicationFiled: November 4, 2010Publication date: May 10, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS