Patents by Inventor Richard Conti

Richard Conti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200194314
    Abstract: A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
    Type: Application
    Filed: December 15, 2019
    Publication date: June 18, 2020
    Inventors: Yi Song, Jay W. Strane, Eric Miller, Fee Li Lie, Richard A. Conti
  • Patent number: 10672668
    Abstract: A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Jay W. Strane, Eric Miller, Fee Li Lie, Richard A. Conti
  • Patent number: 10665512
    Abstract: Compressive and tensile stress is induced, respectively, on semiconductor fins in the pFET and nFET regions of a monolithic semiconductor structure including FinFETs. A tensile stressor is formed from dielectric material and a second, compressive stressor is formed from metal. The stressors may be formed in fin cut regions of the monolithic semiconductor structure and are configured to provide stress in the direction of FinFET current flow. The dielectric material may be deposited on the monolithic semiconductor structure and later removed from the fin cut regions of the pFET region. Metal exhibiting compressive residual stress is then deposited in the fin cut regions from which the dielectric material was removed. Gate cut regions may also be filled with the dielectric stressor material to impart substantially uniaxial tensile stress perpendicular to the semiconductor fins and perpendicular to electrical current flow.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 26, 2020
    Assignee: International Business Machines Corporation
    Inventors: Huimei Zhou, Kangguo Cheng, Michael P. Belyansky, Oleg Gluschenkov, Richard A. Conti, James Kelly, Balasubramanian Pranatharthiharan
  • Publication number: 20200126867
    Abstract: Compressive and tensile stress is induced, respectively, on semiconductor fins in the pFET and nFET regions of a monolithic semiconductor structure including FinFETs. A tensile stressor is formed from dielectric material and a second, compressive stressor is formed from metal. The stressors may be formed in fin cut regions of the monolithic semiconductor structure and are configured to provide stress in the direction of FinFET current flow. The dielectric material may be deposited on the monolithic semiconductor structure and later removed from the fin cut regions of the pFET region. Metal exhibiting compressive residual stress is then deposited in the fin cut regions from which the dielectric material was removed. Gate cut regions may also be filled with the dielectric stressor material to impart substantially uniaxial tensile stress perpendicular to the semiconductor fins and perpendicular to electrical current flow.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 23, 2020
    Inventors: Huimei Zhou, Kangguo Cheng, Michael P. Belyansky, Oleg Gluschenkov, Richard A. Conti, James Kelly, Balasubramanian Pranatharthiharan
  • Publication number: 20200126805
    Abstract: Highly selective dry etching techniques for VFET STI recess are provided. In one aspect, a method for dry etching includes: contacting a wafer including an oxide with at least one etch gas under conditions sufficient to etch the oxide at a rate of less than about 30 ?/min; removing a byproduct of the etch from the wafer using a thermal treatment; and repeating the contacting step followed by the removing step multiple times until a desired recess of the oxide has been achieved. A method of forming a VFET device is also provided.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Inventors: Zhenxing Bi, Muthumanickam Sankarapandian, Richard A. Conti, Michael P. Belyansky
  • Publication number: 20200126926
    Abstract: Provided are embodiments for an MOL interconnect structure having low metal-to-metal interface resistance interconnect structure including one or more contacts of one or more devices formed on a substrate. A dielectric layer is formed on one or more devices. One or more trenches are formed in the dielectric layer. The MOL interconnect structure also includes a barrier layer formed on one or more portions of the dielectric layer, along with a metallization layer, wherein the metallization layer forms a metal-to-metal interface with the one or more contacts.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Inventors: Alex Joseph Varghese, Richard A. Conti, Su Chen Fan
  • Publication number: 20200083345
    Abstract: A method of making a semiconductor device includes forming a gate stack on a substrate. The method further includes depositing a first spacer layer on a sidewall of the gate stack. The first spacer layer includes silicon and carbon. The method includes performing a first nitrogen plasma treatment process on the first spacer layer to increase a density of the first spacer layer. The method further includes depositing a second spacer layer on the first spacer layer. The second spacer layer includes silicon, carbon, and nitrogen.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Donald Canaperi, Richard A. Conti, Thomas J. Haigh, JR., ERIC MILLER, SON NGUYEN
  • Patent number: 10586733
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Patent number: 10586700
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Publication number: 20200051812
    Abstract: A method for fabricating a semiconductor device includes: forming a plurality of fins from a substrate, the fins including nFET fins and pFET fins; forming a trench between the nFET fins and pFET fins; forming a silicon nitride (SiN) layer over the trench, the nFET fins and the pFET fins to create an intermediate device; and depositing with a high density plasma (HDP) process an HDP layer of silicon dioxide (SiO2) over the trench, the nFET fins and the pFET fins. The HDP process includes loading the intermediate device into a deposition chamber and introducing hydrogen (H2) gas and silane (SiH4) into the deposition chamber, wherein the H2 gas is not introduced into the deposition chamber before the SiH4 is introduced into the deposition chamber.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Inventors: Michael P. Belyansky, Brock J. Mendoza, Richard A. Conti, Yong Liang, Han You
  • Patent number: 10535550
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: January 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Publication number: 20190371678
    Abstract: A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Yi Song, Jay W. Strane, Eric Miller, Fee Li Li, Richard A. Conti
  • Publication number: 20190157140
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Application
    Filed: January 2, 2019
    Publication date: May 23, 2019
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Patent number: 10224239
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Publication number: 20190067079
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Application
    Filed: November 16, 2017
    Publication date: February 28, 2019
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Publication number: 20190067078
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Application
    Filed: August 28, 2017
    Publication date: February 28, 2019
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Patent number: 10204827
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Publication number: 20180019202
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 18, 2018
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Publication number: 20180019203
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 18, 2018
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer
  • Publication number: 20180019200
    Abstract: An upper layer is formed in a first interlayer dielectric (ILD) layer. The upper layer comprises a plurality of metal interconnects and one or more upper layer air gaps positioned between adjacent metal interconnects. A lower layer is formed in the first ILD layer. The lower layer comprises one or more vias, and one or more lower air gaps positioned between adjacent vias. The upper layer and the lower layer are formed in accordance with a dual-damascene process.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: Richard A. Conti, Jessica Dechene, Susan S. Fan, Son V. Nguyen, Jeffrey C. Shearer