Patents by Inventor Richard H. Lane

Richard H. Lane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010023948
    Abstract: A double blanket ion implant method for forming diffusion regions in memory array devices, such as a MOSFET access device is disclosed. The method provides a semiconductor substrate with a gate structure formed on its surface Next, a first pair of diffusion regions are formed in a region adjacent to the channel region by a first blanket ion implantation process. The first blanket ion implantation process has a first energy level and dose. The device is subjected to oxidizing conditions, which form oxidized sidewalls on the gate structure. A second blanket ion implantation process is conducted at the same location as the first ion implantation process adding additional dopant to the diffusion regions. The second blanket ion implantation process has a second energy level and dose. The resultant diffusion regions provide the device with improved static refresh performance over prior art devices.
    Type: Application
    Filed: April 2, 2001
    Publication date: September 27, 2001
    Inventors: Mark Fischer, Charles H. Dennison, Fawad Ahmed, Richard H. Lane, John K. Zahurak, Kunal R. Parekh
  • Patent number: 6281070
    Abstract: In one aspect, the invention provides a method of forming an integrated circuitry memory device. In one preferred implementation, a conductive layer is formed over both memory array areas and peripheral circuitry areas. A refractory metal layer is formed over the conductive layer to provide conductive structure in both areas. According to a preferred aspect of this implementation, the conductive layer which is formed over the memory array provides an electrical contact for a capacitor container to be formed. According to another preferred aspect of this implementation, the conductive layer formed over the peripheral circuitry area constitutes a conductive line which includes at least some of the silicide. In another preferred implementation, the invention provides a method of forming a capacitor container over a substrate. According to a preferred aspect of this implementation, a conductive layer is elevationally interposed between an upper insulating layer and a lower conductive layer over the substrate.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: August 28, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Richard H. Lane, John K. Zahurak
  • Publication number: 20010012676
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Application
    Filed: March 7, 2000
    Publication date: August 9, 2001
    Inventors: David L Dickerson, Richard H Lane, Charles H Dennison, Kunal R Parekh, Mark Fischer, John K Zahurak
  • Patent number: 6271593
    Abstract: A method and substrate structure for fabricating highly conductive components on microelectronic devices. In one embodiment in accordance with the principles of the present invention, a first dielectric layer is formed over a base layer of a substrate, a second dielectric layer is deposited onto the first dielectric layer, and a third dielectric layer is deposited onto the second dielectric layer. The first, second and third dielectric layers define a dielectric stratum in which the first and second dielectric layers may be selectively etchable from one another so that the second dielectric layer etches at a faster rate than the first layer in the presence of a selective etchant. After the dielectric layers are deposited onto the substrate, a void is etched through the second and third dielectric layers.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: August 7, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John H. Givens, Richard H. Lane
  • Publication number: 20010009798
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Application
    Filed: February 9, 2001
    Publication date: July 26, 2001
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer
  • Patent number: 6261899
    Abstract: In one aspect, the invention provides a method of forming an integrated circuitry memory device. In one preferred implementation, a conductive layer is formed over both memory array areas and peripheral circuitry areas. A refractory metal layer is formed over the conductive layer to provide conductive structure in both areas. According to a preferred aspect of this implementation, the conductive layer which is formed over the memory array provides an electrical contact for a capacitor container to be formed. According to another preferred aspect of this implementation, the conductive layer formed over the peripheral circuitry area constitutes a conductive line which includes at least some of the silicide. In another preferred implementation, the invention provides a method of forming a capacitor container over a substrate. According to a preferred aspect of this implementation, a conductive layer is elevationally interposed between an upper insulating layer and a lower conductive layer over the substrate.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: July 17, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Richard H. Lane, John K. Zahurak
  • Patent number: 6238999
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: May 29, 2001
    Assignee: Micron Technology
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak
  • Patent number: 6175146
    Abstract: In one aspect, the invention provides a method of forming an integrated circuitry memory device. In one preferred implementation, a conductive layer is formed over both memory array areas and peripheral circuitry areas. A refractory metal layer is formed over the conductive layer to provide conductive structure in both areas. According to a preferred aspect of this implementation, the conductive layer which is formed over the memory array provides an electrical contact for a capacitor container to be formed. According to another preferred aspect of this implementation, the conductive layer formed over the peripheral circuitry area constitutes a conductive line which includes at least some of the silicide. In another preferred implementation, the invention provides a method of forming a capacitor container over a substrate. According to a preferred aspect of this implementation, a conductive layer is elevationally interposed between an upper insulating layer and a lower conductive layer over the substrate.
    Type: Grant
    Filed: November 14, 1997
    Date of Patent: January 16, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Richard H. Lane, John K. Zahurak
  • Patent number: 6153532
    Abstract: Methods and apparatuses for removing material from discrete areas on a semiconductor wafer are described. In one implementation, an etchant applicator is provided having a tip portion. Liquid etchant material is suspended proximate the tip portion and the etchant applicator is moved, together with the suspended liquid, sufficiently close to a discrete area on a wafer to transfer liquid etchant onto the discrete area. In various embodiments the tip portion can comprise fluid permeable materials, fluid-absorbent materials, and/or wick assemblies. An exhaust outlet can be provided operably proximate the tip portion for removing material from over the wafer. The tip portion can be moved to touch the discrete area.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: November 28, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Daniel B. Dow, Richard H. Lane
  • Patent number: 6090655
    Abstract: Disclosed is a three-dimensional integrated memory cell having a high interior volume and a method for constructing the same. The cell makes use of a highly conductive substrate material for the bottom electrode, allowing construction of a thin substrate without intolerable resistance. The substrate of the preferred embodiment, for example, comprises titanium silicide. The preferred method comprises conformal deposition of a thin polysilicon layer within a high aspect ratio container, followed by deposition of a suitable metal for silicidation with the polysilicon layer. The metal need not be conformal for this preferred method and may be deposited by sputter deposition. After silicidation, excess metal is selectively etched away to leave a conformal, thin yet highly conductive substrate material.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: July 18, 2000
    Assignee: Micron Technology, Inc.
    Inventors: John K. Zahurak, Richard H. Lane
  • Patent number: 6080655
    Abstract: A method and substrate structure for fabricating highly conductive components on microelectronic devices. In one embodiment in accordance with the principles of the present invention, a first dielectric layer is formed over a base layer of a substrate, a second dielectric layer is deposited onto the first dielectric layer, and a third dielectric layer is deposited onto the second dielectric layer. The first, second and third dielectric layers define a dielectric stratum in which the first and second dielectric layers may be selectively etchable from one another so that the second dielectric layer etches at a faster rate than the first layer in the presence of a selective etchant. After the dielectric layers are deposited onto the substrate, a void is etched through the second and third dielectric layers.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: June 27, 2000
    Assignee: Micron Technology, Inc.
    Inventors: John H. Givens, Richard H. Lane
  • Patent number: 5998257
    Abstract: In one aspect, the invention provides a method of forming an integrated circuitry memory device. In one preferred implementation, a conductive layer is formed over both memory array areas and peripheral circuitry areas. A refractory metal layer is formed over the conductive layer to provide conductive structure in both areas. According to a preferred aspect of this implementation, the conductive layer which is formed over the memory array provides an electrical contact for a capacitor container to be formed. According to another preferred aspect of this implementation, the conductive layer formed over the peripheral circuitry area constitutes a conductive line which includes at least some of the silicide. In another preferred implementation, the invention provides a method of forming a capacitor container over a substrate. According to a preferred aspect of this implementation, a conductive layer is elevationally interposed between an upper insulating layer and a lower conductive layer over the substrate.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: December 7, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Richard H. Lane, John K. Zahurak
  • Patent number: 5760434
    Abstract: Disclosed is a three-dimensional integrated memory cell having a high interior volume and a method for constructing the same. The cell makes use of a highly conductive substrate material for the bottom electrode, allowing construction of a thin substrate without intolerable resistance. The substrate of the preferred embodiment, for example, comprises titanium silicide. The preferred method comprises conformal deposition of a thin polysilicon layer within a high aspect ratio container, followed deposition of a suitable metal for silicidation with the polysilicon layer. The metal need not be conformal for this preferred method and may be deposited by sputter deposition. After silicidation, excess metal is selectively etched away to leave a conformal, thin yet highly conductive substrate material.
    Type: Grant
    Filed: May 7, 1996
    Date of Patent: June 2, 1998
    Assignee: Micron Technology, Inc.
    Inventors: John K. Zahurak, Richard H. Lane
  • Patent number: 5204275
    Abstract: A process for fabricating a compact bipolar transistor structure is disclosed which eliminates the need for a field oxide isolation region between the collector contact region and emitter of the transistor. An island of non-monocrystalline silicon is formed on top of the transistor structure partially covering the base and collector contact regions. Ribbons of non-insulating material are formed along the sidewalls of the island. The ribbon over the base region is employed to form a narrow emitter region with an annealing step that drives dopant from the ribbon or island into the portion of the base region below the ribbon. An insulating layer is disposed between the transistor structure and the island and ribbon over the collector contact region to insulate the emitter from the collector. Insulating sidewall spacers are formed next to the sidewall ribbons to insulate silicide regions grown over the base region, island and collector contact region for the three transistor contacts.
    Type: Grant
    Filed: December 26, 1990
    Date of Patent: April 20, 1993
    Assignee: North American Philips Corp.
    Inventor: Richard H. Lane
  • Patent number: 5145571
    Abstract: In an integrated circuit, gold interconnect metal lines are electroplated onto plating (Pd) and barrier (TiW) layers, using patterned photoresist. The photoresist is stripped and the plating layer portions thus exposed are etched to expose field areas of the barrier layer. Next, sidewall spacers are formed along each side of the interconnect lines. The field areas of the barrier layer are then etched to isolate the gold interconnect lines. The spacers offset the amount of undercut due to isotropic etching of the TiW barrier metal layer. After etching, the sidewall spacers serve to preserve the as-deposited profile of the gold interconnect lines against breadloafing in a subsequent annealing step.
    Type: Grant
    Filed: August 3, 1990
    Date of Patent: September 8, 1992
    Assignee: Bipolar Integrated Technology, Inc.
    Inventors: Richard H. Lane, Timothy M. Ebel
  • Patent number: 4746623
    Abstract: A method for fabricating a semiconductor device in which the base resistance is minimized to increase the speed of operation of the device. This is accomplished because the device made by the method makes it possible to form the base and emitter contacts next to each other laterally but spaced vertically.
    Type: Grant
    Filed: January 29, 1986
    Date of Patent: May 24, 1988
    Assignee: Signetics Corporation
    Inventor: Richard H. Lane
  • Patent number: 4736271
    Abstract: A protection device (14) for an integrated circuit (12) created on a semiconductor body (24 and 26) utilizes one or more semiconductor diodes (D.sub.L and/or D.sub.H) that have subsurface PN junctions (46 and/or 56) for preventing high-magnitude voltages, such as those generated by electrostatic discharge, from damaging sensitive electronic elements of a protected circuit component (16) formed from part of the body. The device is fabricated by an epitaxial layer/double buried region process.
    Type: Grant
    Filed: June 23, 1987
    Date of Patent: April 5, 1988
    Assignee: Signetics Corporation
    Inventors: William D. Mack, Richard H. Lane
  • Patent number: 4381956
    Abstract: A technique is described for the preparation of buried channels of arbitrary conductivity type in a semiconductor device or integrated circuit containing oxide moats in an epitaxial surface layer. By following a specific sequence of process steps, two mask layers are obtained from a single mask alignment step which permits adjacent regions in the substrate to be doped to different conductivity and type, if desired, prior to the growth of the epitaxial layer. The resulting epitaxial layer has an irregular surface pattern reflecting the shape of the buried structures to faciliate ready alignment with the mask pattern necessary for the production of oxide moats. The resulting structure has a channel buried under the oxide moat region which is used to inhibit the formation of parasitic channels or create a desired channel for device purposes.
    Type: Grant
    Filed: April 6, 1981
    Date of Patent: May 3, 1983
    Assignee: Motorola, Inc.
    Inventor: Richard H. Lane
  • Patent number: 4130878
    Abstract: An expandable array multiplier is disclosed using an asynchronous, sequential add technique for multiplying two numbers in either straight magnitude or two's complement notation. First and second control terminals are provided for simplifying expansion to larger array sizes. The control terminals can be programmed to select either two's complement or straight magnitude multiplication. For a two's complement multiply, the control terminals are programmed according to the relative position of the particular multiplier within an expanded array such that the proper two's complement correction terms are generated within a particular multipler. A carry-lookahead technique is used to further improve multiplier performance.
    Type: Grant
    Filed: April 3, 1978
    Date of Patent: December 19, 1978
    Assignee: Motorola, Inc.
    Inventors: Thomas J. Balph, Richard H. Lane